
The great book

for ESP32forth
version 1.17 - 5 January 2024

Author

• Marc PETREMANN petremann@arduino-forth.com

Collaborators

• Bob EDWARDS

• Vaclav POSELT

• Thomas SCHREIN

Page 1

Contents
Author..1
Collaborators..1

Introduction..11
Translation help..11

Discovery of the ESP32 card..12
Presentation...12

The strong points..12
GPIO inputs/outputs on ESP32...13
ESP32 Peripherals...14

The different ESP32 cards...15
Final installation of ESP32forth...16
The ESP32 Wroom 32 board..16

Connector board...17
The ESP32 Wrover board...17

Connector board...18
The ESP32 S3 board..18

Connector board...19

Install ESP32Forth...20
Download ESP32forth..20
Compiling and installing ESP32forth..20

Settings for ESP32 WROOM...22
Start the compilation...23

Fix Upload Connection Error..24

Why program in FORTH language on ESP32?..26
Preamble..26
Boundaries between language and application..26
What is a FORTH word?...27
A word is a function?...27
FORTH language compared to C language..28

What FORTH allows you to do compared to the C language...................................29
But why a stack rather than variables?...30
Are you convinced?...30

Are there any professional applications written in FORTH?...30

Using numbers with ESP32Forth...33
Numbers with the FORTH interpreter..33

Entering numbers with different numeric bases...34
Change of numerical base..34
Binary and hexadecimal...35
Size of numbers on FORTH data stack..37
Memory access and logic operations...38

A real 32-bit FORTH with ESP32Forth...41

Page 2

Values on the data stack..41
Values in memory..41
Word processing depending on data size or type...42

Conclusion..43

Comments and debugging...45
Write readable FORTH code...45

Source code indentation..46
Comments..47

Stack comments..47
Meaning of stack parameters in comments...47
Word Definition Word Comments...48

Textual comments...49
Comment at the beginning of the source code..49

Diagnostic and tuning tools..50
The decompiler...50
Memory dump...50
Data stack monitor..50

Dictionary / Stack / Variables / Constants..52
Expand Dictionary...52

Dictionary management...52
Stacks and reverse Polish notation...53

Handling the parameter stack..54
The Return Stack and Its Uses...54
Memory usage..55

Variables...55
Constants...55
Pseudo-constant values...56
Basic tools for memory allocation...56

Text colors and display position on terminal...58
ANSI coding of terminals...58
Text coloring...58
Display position...60

Local variables with ESP32Forth...62
Introduction..62
The fake stack comment..62
Action on local variables..63

Data structures for ESP32forth...66
Preamble..66
Tables in FORTH...66

One-dimensional 32-bit data array..66
Words for table definitions...67
Read and write in a table...67
Practical example of managing a virtual screen...68

Management of complex structures..71
Definition of sprites...73

Page 3

Real numbers with ESP32forth..76
The real ones with ESP32forth...76

Real number accuracy with ESP32forth...76
Real constants and variables..77
Arithmetic operators on real numbers...77
Mathematical operators on real numbers..77
Logical operators on real numbers..78
Integer ↔ real transformations..78

Displaying numbers and character strings..80
Change of numerical base..80
Definition of new display formats...81
Displaying characters and character strings...83
String variables...85

Text variable management word code..85
Adding character to an alphanumeric variable...87

Vocabularies with ESP32forth...89
List of vocabularies..89
List of vocabulary contents..90
Using vocabulary words...90
Chaining of vocabularies..91

Delayed action words..92
Definition and usage of words with defer..92

Setting a Forward Reference..93
Dependence on the operating context..94

A practical case...95

Word Creation Words..97
Using does>...97

Color management example...98
Example, writing in pinyin..99

Adapt breadboards to ESP32 board...100
Breadboards for ESP32..100
Build a breadboard suitable for the ESP32 board...100

Powering the ESP32 board..102
Choice of power source..102

Powered by mini-USB connector...102
Power supply via 5V pin...102

Automatic start of a program...104

Install and use the Tera Term terminal on Windows.......................................106
Install Tera Term...106
Setting up Tera Term..106
Using Tera Term...109
Compile source code in Forth language...110

Access ESP32Forth by TELNET...112
Change the DNS name of the ESP32 board...112
Connecting to ESP32 boards by their hostname...113

Page 4

Management of source files by blocks...116
The blocks..116
Open a block file...116
Edit the contents of a block..117
Compiling block contents...118
Practical step-by-step example...118
Conclusion..119

Editing source files with VISUAL Editor...120
Edit a FORTH source file..120
Editing the FORTH code...120
Compiling file contents...121

The SPIFFS file system..122
Access to the SPIFFS file system..122

Handling files..123
Organize and compile your files on the ESP32 card..124

Editing and transmitting source files...124
Conclusion..124

RECORDFILE and FORTH project management...126
Save RECORDFILE in autoexec.fs file..126
Use modified contents of autoexec.fs file..128

Breaking down a project with ESP32forth..128
Example project..128

The notion of a black box...130

Editing and managing source files for ESP32forth..133
Text file editors...133

Use an IDE..133
Storage on GitHub...136

Some good practices...136
The main.fs file...137

Quickly save files to SPIFFS..138
Have the word RECORDFILE when starting ESP32forth..139

Managing a traffic light with ESP32..141
GPIO ports on the ESP32 board..141
Mounting the LEDs..142
Management of traffic lights...143
Conclusion..143

Direct access to GPIO registers...145
Use of words m! and m@...145
The GPIO_OUT_REG register...148
Activation and deactivation registers...149

Hardware interrupts with ESP32forth...153
Interruptions...153

Mounting a push button...153
Software consolidation of the interrupt...154
Further information...155

Page 5

Using the KY-040 rotary encoder..156
Encoder Overview...156

Mounting the encoder on the breadboard...157
Analysis of encoder signals...158

Encoder programming...159
Testing the encoding...160
Increment and decrement a variable with the encoder...160

Flashing of an LED per timer...162
Getting started with FORTH programming...162
Flashing by TIMER...163

Hardware and software interrupts..164
Use the words interval and rerun..164

Housekeeper timer..166
Preamble..166

A solution..166
A FORTH timer for ESP32Forth...167

Management of the light on button...168
Conclusion..170

Software real-time clock...171
The word MS-TICKS..171
Managing a software clock...171

Measuring the execution time of a FORTH word...173
Measuring the performance of FORTH definitions..173
Testing a few loops...174

Program a sunshine analyzer..175
Preamble..175
The miniature solar panel..175

Recovery of a miniature solar panel..175
Measurement of solar panel voltage...176
Solar panel current measurement...177
Lowering the solar panel voltage..177

Programming the solar analyzer...178
Managing activation and deactivation of a device..180
Triggered by timer interrupt...181
Devices controlled by the sunshine sensor..182

Management of N/A (Digital/Analog) outputs..184
Digital/analog conversion...184

D/A conversion with R2R circuit..184
D/A conversion with ESP32..184
Possibilities of D/A conversion..186

Installing the OLED library for SSD1306...187

The I2C interface on ESP32...189
Introduction..189

Master slave exchange...190
Addressing..191

Page 6

Setting GPIO ports for I2C...192
I2C bus protocols..192

Detecting an I2C device...192

The SSD1306 OLED display...194
Choosing a display interface...194

Online documentation..195
Connecting the SSD1306 OLED display...195
Memory organization...196

Organize the SSD1306 project..197
Create the autoexec.fs file...197
Creating the main.fs file...198
Creating the config.fs file...198
Creating the oledTools.fs file..199
Test our SSD1306 project..199

Use OLED vocabulary..200
Initializing the I2C bus for the SSD1306 OLED display...201
Initializing the display for SSD1306...201
Expand the oled vocabulary...204

TEMPVS FVGIT...205
Romani non ustulo nulla..205

Romani horas et minuta...206
Haec omnia integramus pro ESP32forth..207

Add the SPI library..209
Changes to the ESP32forth.ino file..209

First modification...209
Second modification..210
Third modification..210
Fourth modification..210

Communicate with the MAX7219 display module...211
Locating the SPI port on the ESP32 board...212
SPI connectors on the MAX7219 display module..212
SPI port software layer..213

Installing the HTTP client..214
Editing the ESP32forth.ino file..214

HTTP Client Testing...215

Retrieve the time from a WEB server..217
Transmission and reception of time from a web server..217

Understanding transmission by GET to a WEB server......................................219
Transmission of data to a server by GET...219

Parameters in a URL..219
Passing multiple parameters...219
Managing parameter passing with ESP32forth...220

Data transmission to a WEB server...222
Data recording on the web server side..222

Access protection..222

Page 7

View recorded data..223
Add data to transmit..224

Conclusion..226

Sound synthesis with ESP32Forth...227
Simple sound synthesis..227

Definition of sound frequency table..227
Retrieving the frequency of a musical note..228
Managing note duration...229
One-note support..230
Creating musical notes...231
Sound test..232
The flight of the bumblebee...232

Program in XTENSA assembler..235
Preamble..235
Compile the XTENSA assembler..236
Programming in assembler...236

Summary of basic instructions..237
A bonus disassembler..238

First steps in XTENSA assembler...240
Preamble..240

Invoking the Xtensa assembler...240
Xtensa and the FORTH stack..240

Writing an Xtensa macro instruction...241
Managing the FORTH stack in Xtensa assembler...243

Efficiency of words written in XTENSA assembler...245

Loops and connections in XTENSA assembler..246
The LOOP instruction in XTENSA assembler..246
Manage a loop in XTENSA assembler with ESP32forth...247

Defining loop management macro instructions..247
Using the For, and Next macros,..247
Connection instructions in XTENSA assembler...248

Defining branching macros...248
Syntax of branching macro instructions...249

Definition and manipulation of registers...251
Definition of registers..251
Access to register contents..251

Handling register bits...253
Definition of masks..253

Switching from C language to FORTH language...254

The random number generator..257
Characteristic..257
Programming procedure..258

RND function in XTENSA assembler..258

The LoRa transmission system..259
Cabling of the REYAX LR890 LoRa transmitter...259

Page 8

The LoRa transmitter for ESP32..259
LoRa transmission security...260

Review of the REYAX RYLR890 LoRa transmitter..262
Required test environment...262
Prepare communication with the LoRa transmitter...262

Setting up the REYAX RYLR890 LoRa transmitter...265
Essential parameters...265

ADDRESS Defines the module address..266
AT Test LoRa Availability..267
BAND Setting the RF frequency..267
CPIN Sets the AES128 network password..267
CRFOP Selects the output RF power...268
FACTORY Sets all current settings to default values...268
IPR Sets the UART baud rate...268
MODE Selects the working mode..269
NETWORKID Selects the network ID...269
PARAMETER definition of RF parameters...270
Software RESET..271
SEND sending data to the designated address...271
VER to request firmware version..272
Error result codes..272

Vectorization of character emissions...272
Understanding vectorization in FORTH..273
Vectorization in ESP32Forth...273
Vectorize type to UART2 serial port..274

Rewriting a complete listing...275
Setting up LoRa transmitters..276
Determining the address of LoRa transmitters...278

Communication between two REYAX RYLR890 LoRa transmitters.................279
Transmission from BOSS to SLAV2...280

Interfacing a LoRa transmission with ESP32Forth..282
The LoRa transmitter side program called BOSS..283
Receipt and execution of FORTH commands by SLAV1..285

Executing a command received by LoRa...285
LoRa transmission management loop..286

ESP32Forth simple WEB interface...289

Detailed content of ESP32forth vocabularies..294
Version v 7.0.7.15...294

FORTH..294
asm..295
bluetooth..296
editor..296
ESP..296
httpd..296
insides..296

Page 9

internals...296
interrupts..297
ledc..297
oled..297
registers...297
riscv...297
rtos..298
SD..298
SD_MMC...298
Serial..298
sockets...298
spi..298
SPIFFS..298
streams..298
structures...299
tasks...299
telnetd..299
visual..299
web-interface..299
WiFi..299
Wire...299
xtensa..299

Appendix A – Registers summary..301
GPIO registers...301

Ressources..304
in English..304
In french...304
GitHub..304

Page 10

Introduction
Since 2019, I manage several websites dedicated to FORTH language development for
ARDUINO and ESP32 boards, as well as the eForth web version:

• ARDUINO : https://arduino-forth.com/

• ESP32 : https://esp32.arduino-forth.com/

• eForth web : https://eforth.arduino-forth.com/

These sites are available in two languages, French and English. Every year I pay for
hosting the main site arduino-forth.com.

It will happen sooner or later – and as late as possible – that I will no longer be able to
ensure the sustainability of these sites. The consequence will be that the information
disseminated by these sites disappears.

This book is the compilation of content from my websites. It is distributed freely from a
Github repository. This method of distribution will allow greater sustainability than
websites.

Incidentally, if some readers of these pages wish to contribute, they are welcome:

• to suggest chapters ;

• to report errors or suggest changes;

• to help with the translation...

Translation help

Google Translate allows you to translate texts easily, but with errors. So I'm asking for
help to correct the translations.

In practice, I provide the chapters already translated in the LibreOffice format. If you want
to help with these translations, your role will simply be to correct and return these
translations.

Correcting a chapter takes little time, from one to a few hours.

To contact me : petremann@arduino-forth.com

Page 11

https://eforth.arduino-forth.com/
https://esp32.arduino-forth.com/
https://arduino-forth.com/

Discovery of the ESP32 card

Presentation

The ESP32 board is not an ARDUINO board. However, development tools leverage certain
elements of the ARDUINO eco-system, such as the ARDUINO IDE.

The strong points

In terms of the number of ports available, the ESP32 card is located between an ARDUINO

NANO and ARDUINO UNO. The basic model has 38 connectors:

ESP32 devices include :

• 18 analog-to-digital converter (ADC) channels

• 3 SPI interfaces

• 3 UART interfaces

• 2 I2C interfaces

• 16 PWM output channels

• 2 digital-to-analog converters (DAC)

• 2 I2S interfaces

• 10 capacitive sensing GPIOs

The ADC (analog-to-digital converter) and DAC (digital-to-analog converter) functionality
are assigned to specific static pins. However, you can decide which pins are UART, I2C,
SPI, PWM, etc. You just need to assign them in the code. This is possible thanks to the
multiplexing function of the ESP32 chip.

Page 12

Figure 1: the base board has 38 connectors

Most connectors have multiple uses.

But what sets the ESP32 board apart is that it is equipped as standard with WiFi and
Bluetooth support, something that ARDUINO boards only offer in the form of extensions.

GPIO inputs/outputs on ESP32

Here, in photo, the ESP32 card from which we will explain the role of the different GPIO
inputs/outputs.

The position and number of GPIO I/Os may change depending on the card brand. If this is
the case, only the indications appearing on the physical map are authentic. Pictured,
bottom row, left to right: CLK, SD0, SD1, G15, G2, G0, G4, G16.....G22, G23, GND.

In this diagram, we see that the bottom row begins with 3V3 while in the photo, this I/O
is at the end of the top row. It is therefore very important not to rely on the diagram and
instead to double check the correct connection of the peripherals and components on the
physical ESP32 card.

Development boards based on an ESP32 generally have 33 pins apart from those for the
power supply. Some GPIO pins have somewhat particular functions :

GPIO Possibles usage

6 SCK/CLK

7 SCK/CLK

8 SDO/SD0

9 SDI/SD1

10 SHD/SD2

11 CSC/CMD

Page 13

Figure 2: GPIO I/O position

If your ESP32 card has I/O GPIO6, GPIO7, GPIO8, GPIO9, GPIO10, GPIO11, you should
definitely not use them because they are connected to the flash memory of the ESP32. If
you use them the ESP32 will not work.

Page 14

GPIO1(TX0) and GPIO3(RX0) I/O are used to communicate with the computer in UART via
USB port. If you use them, you will no longer be able to communicate with the card.

GPIO36(VP), GPIO39(VN), GPIO34, GPIO35 I/O can be used as input only. They also do
not have built-in internal pullup and pulldown resistors.

The EN terminal allows you to control the status of the ESP32 via an external wire. It is
connected to the EN button on the card. When the ESP32 is turned on, it is at 3.3V. If we
connect this pin to ground, the ESP32 is turned off. You can use it when the ESP32 is in a
box and you want to be able to turn it on/off with a switch.

ESP32 Peripherals

To interact with modules, sensors or electronic circuits, the ESP32, like any micro-
controller, has a multitude of peripherals. There are more of them than on a classic
Arduino board.

ESP32 has the following peripherals :

• 3 UART interface
• 2 I2C interfaces
• 3 SPI interfaces
• 16 PWM outputs
• 10 capacitive sensors
• 18 analog inputs (ADC)
• 2 DAC outputs

Some peripherals are already used by ESP32 during its basic operation. There are
therefore fewer possible interfaces for each device.

Page 15

The different ESP32 cards

If you go to an online sales site to order an ESP32 card, you may end up with a very large
choice of cards.

Several questions therefore arise to guide the choice:

 which board can host ESP32forth?

 Which cards are best suited to my projects?

 what is my budget for a given project?

If the price of an ordinary ESP32 card remains affordable, certain variants can see their
prices soar. If your goal is to first carry out small experiments, start with a simple ESP32
board. To properly experiment, you will need:

 breadboards, take at least 10. Allow two breadboards per ESP32 card;

 flexible dupont type connectors;

 LEDs, resistors, etc.

 peripherals: OLED display, LCD, relays, synchronous or ordinary motors, servo
motors, etc.

 USB cable connecting the PC and the ESP32 card. A
USB hub is recommended. In the event of accidental
current injection into the USB port, it will be the hub's
USB port that will be damaged before the PC's USB
port;

For around fifty euros (or US$), there are ready-to-use kits,
including an ESP32 card and peripherals and components.

No kit is complete. If you are carrying out experiments, the
ideal is to order a kit, then several ESP32 cards (at least 4)
a series of test plates, flat straps, a battery power supply, etc.…

Page 16

Figure 3: un grand choix de cartes ESP32 sur AMAZON

Figure 4: kit ESP32

Before embarking on ambitious projects, such as remote control via 3G/4G/5G network,
video analysis, etc. start with simple experiments, in C or FORTH.

Final installation of ESP32forth

NO ! The installation of ESP32forth on an ESP32 card is not permanent ! If you have
installed ESP32Forth on one or more ESP32 boards, you can easily download the binary
code from any C source, after compiling the contents of an ino extension file, to your
ESP32 boards and abandon FORTH programming .

But, at the risk of advertising ESP32forth, many “makers” have made the definitive choice
to program in FORTH language. Just one example, 0033mer’s YouTube channel:
 https://www.youtube.com/@0033mer

He is one of the most prolific FORTH contributors on Youtube. Even though he uses ESP32
very little, the majority of his contributions use the FORTH language.

Programming in FORTH language requires intellectual effort. This effort is not in vain,
because it leads to certain good practices that can be used in other programming
languages.

FORTH is the only programming language that can be installed on an electronic card and
which integrates an interpreter, a compiler, an assembler, a SPIFFS file system, all with
significant development space.

The ESP32 card is one of the very rare cards that also has serial communication
capabilities (UART0 port via the USB connector), via WiFi or Bluetooth. The majority of
cards also have numerous versatile GPIO ports: logic, analog, PWM, UART, SPI, I2C input
and output, etc. And all this with one or two processors at nearly 160Mhz, or 10x faster
than on an ordinary ARDUINO card. .

And finally, most of the C libraries for ARDUINO can be used on ESP32. Some are
accessible from ESP32forth.

The ESP32 Wroom 32 board
ESP32 Wroom is the latest addition to the family of ESP
cards from Espressif. This is a particularly fashionable
range of development boards, because their low price,
low consumption and small size make them an ideal
product for carrying out small IoT projects.

 ESP-WROOM-32 processor

 WLAN 802.11 b/g/n

 Bluetooth 4.2 / BLE

Page 17

Figure 5: carte ESP32 Wroom 32

https://www.youtube.com/@0033mer

 Tensilica L108 32-bit 160 MHz processor

 512 KB of SRAM and 16 MB of flash memory

 32 digital I/O pins (3.3V)

 6 analog-digital pins

 3x UART, 2x SPI, 2x I2C

 USB to UART CP2102 interface

If you compile ESP32forth for this board, here are the parameters to consider on
ARDUINO IDE: TOOLS → BOARD → ESP32 → ESP32 Dev Module:

 Board: ESP32 Dev Module
Partition Scheme: No OTA (2M APP, 2M SPIFFS) ← Non-default
Upload Speed: 921600
CPU Frequency: 240MHz
Flash Frequency: 80MHz
Flash Mode: QIO
Flash Size: 4MB (32Mb)
Core Debug Level: None

PSRAM: Disable

Connector board

The ESP32 Wrover board

Espressif Systems ESP32-WROVER MCU Modules are
powerful and generic Wi-Fi/BT/BLE MCU modules that
target a wide range of applications.

Page 18

Figure 6: carte ESP32 Wrover

These modules target applications ranging from low-power sensor networks to the most
demanding tasks, such as voice coding, music streaming, and MP3 decoding.

The ESP32-WROVER module uses a PCB antenna while the ESP32-WROVER-I uses an
IPEX antenna. These modules have an external 4 MB SPI Flash, an external 4 MB PSRAM
and a 32 Mbit SPI PSRAM.

If you compile ESP32forth for this board, here are the parameters to consider on
ARDUINO IDE: TOOLS → BOARD → ESP32 → ESP32 Dev Module:

 Board: ESP32 Dev Module
Partition Scheme: No OTA (2M APP, 2M SPIFFS) ← Non-default
Upload Speed: 921600
CPU Frequency: 240MHz
Flash Frequency: 80MHz
Flash Mode: QIO
Flash Size: 4MB (32Mb)
Core Debug Level: None

PSRAM: Enabled

Connector board

The ESP32 S3 board

ESP32-S3 is a development board based on an
Espressif ESP32-S3-WROOM-2 microcontroller with WiFi
and Bluetooth Low Energy interfaces.

 Xtensa LX7 dual-core 32-bit microprocessor
PSRAM memory: 8 MB
SRAM memory: 512 KB
ROM memory: 384 KB
SRAM memory (RTC): 16 KB SPI

Page 19

Figure 7: ESP32 S3 board

FLASH memory: 32 MB
WiFi interface: 802.11 b/g/n 2.4 GHz
BLE 5 Mesh interface

If you compile ESP32forth for this board, here are the parameters to consider on
ARDUINO IDE: TOOLS → BOARD → ESP32 → ESP32 Dev Module:

 Board: ESP32S2 Dev Module
Partition Scheme: No OTA (2M APP, 2M SPIFFS) ← Non-default
Upload Speed: 921600
USB CDC On Boot: Disabled
USB Firmware MSC On Boot: Disabled
USB DFU On Boot: Disabled
Upload Mode: UART0
CPU Frequency: 240MHz
Flash Frequency: 80MHz
Flash Mode : QIO
Flash Size: 4MB (32Mb)
Core Debug Level: None

PSRAM: Enabled

Connector board

Page 20

Install ESP32Forth

Download ESP32forth
The first step consists of recovering the source code, in C language, of ESP32forth.
Preferably use the most recent version:
https://esp32forth.appspot.com/ESP32forth.html

Contents of the downloaded file:

ESP32forth-7.0.xx

ESP32forth
readme.txt
esp32forth.ino
optional

SPI-flash.h
serial-blueooth.h
... etc...

Compiling and installing ESP32forth

Copy esp32forth.ino file into a working directory. The optional directory contains files
allowing the extension of ESP32forth. For our first build and upload of ESP32forth, these
files are not needed.

To compile ESP32forth, you must have ARDUINO IDE already installed on your computer:
https://docs.arduino.cc/software/ide-v2

Once ARDUINO IDE is installed, launch it. ARDUINO IDE is open, here version 2.01. Click
file and select Preferences :

1 Note about ESP32forth versions – so called Stable release 7.0.6.19 needs for correct compilation Espressif board
libraries 1.0.6, recent version 7.0.7.15 needs libraries 2.0.x.

Page 21

https://docs.arduino.cc/software/ide-v2
https://esp32forth.appspot.com/ESP32forth.html

In the window that appears, go to the input box marked Additional boards manager URLs
: and enter this line:

https://dl.espressif.com/dl/package_esp32_index.json

Next, click Tools and select Board :.

Page 22

https://dl.espressif.com/dl/package_esp32_index.json

This selection should offer you the installation of packages for ESP32. Accept this
installation.

You should then be able to access the selection of ESP32 cards:

ESP32 Dev Module board selection :

Settings for ESP32 WROOM
Here are the other settings needed before compiling ESP32forth. Access the settings by
clicking on Tools again :

-- TOOLS----+-- BOARD ----+-- ESP32 ------+-- ESP32 Dev Module
 +-- Port: -------+-- COMx
 |

Page 23

 +-- CPU Frequency ---------+-- 240 Mhz
 +-- Core Debug Level ------+-- None
 +-- Erase All Flash...-----+-- Disabled
 +-- Events Run On ---------+-- Core 1
 +-- Flash Frequency -------+-- 80 Mhz
 +-- Flash Mode ------------+-- QIO
 +-- Flash Size ------------+-- 4MB
 +-- JTAG Adapter ----------+-- FTDI Adapter
 +-- Arduino Runs on -------+-- Core 1
 +-- PSRAM -----------------+-- Disabled
 +-- Partition Scheme ------+-- Default 4MB with SPIFFS
 +-- Upload Speed ----------+-- 921600

Start the compilation
All that remains is to compile ESP32forth. Load the source code by File and Open .

It is assumed that your ESP32 board is connected to a USB port. Start the compilation by
clicking on Sketch and selecting Upload :

If everything goes correctly, you should transfer the binary code automatically into the
ESP32 board. If the compilation goes without errors, but there is a transfer error,
recompile the esp32forth.ino file . At the time of transfer, press button marked BOOT
on the ESP32 board. This should make the card available for transferring the ESP32forth
binary code.

Installation and configuration of ARDUINO IDE in video:

 Windows: https://www.youtube.com/watch?v=2AZQfieHv9g

 Linux: https://www.youtube.com/watch?v=JeD3nz0__nc

Page 24

https://www.youtube.com/watch?v=JeD3nz0__nc
https://www.youtube.com/watch?v=2AZQfieHv9g

Fix Upload Connection Error
Learn how to fix the fatal error that occurred: “Failed to connect to ESP32: Timed out
waiting for packet header” when trying to upload a new code to your ESP32 Card once
and for all.

Some ESP32 development boards (read Best ESP32 Boards) do not enter flash/upload
mode automatically when downloading new code.

This means that when you try to upload a new sketch to your ESP32 board, ARDUINO IDE
fails to connect to your board and you get the following error message:

To make the ESP32 board automatically switch to flash/download mode, we can connect a
10uF electrolytic capacitor between the EN and GND pin:

Page 25

This manipulation is only necessary if you are in the uploading phase of ESP32forth from
ARDUINO IDE. Once ESP32forth is installed on the ESP32 board, the use of this capacitor
is no longer necessary.

Page 26

Why program in FORTH language on ESP32?

Preamble

I have been programming in FORTH since 1983. I stopped programming in FORTH in
1996. But I have never stopped monitoring the evolution of this language. I resumed
programming in 2019 on ARDUINO with FlashForth then
ESP32forth.

I am co-author of several books concerning the FORTH langage :

• Introduction au ZX-FORTH (ed Eyrolles - 1984 -
ASIN:B0014IGOXO)

• Tours de FORTH (ed Eyrolles - 1985 - ISBN-13: 978-
2212082258)

• FORTH pour CP/M et MSDOS (ed Loisitech - 1986)

• TURBO-Forth, manuel d'apprentissage (ed Rem CORP - 1990)

• TURBO-Forth, guide de référence (ed Rem CORP - 1991)

Programming in the FORTH language was always a hobby until 1992 when the manager
of a company working as a subcontractor for the automobile industry contacted me. They
had a concern for software development in C language. They needed to order an industrial
automaton.

The two software designers of this company programmed in C language: TURBO-C from
Borland to be precise. And their code couldn't be compact and fast enough to fit into the
64 kilobytes of RAM memory. It was 1992 and flash memory type expansions did not
exist. In these 64 KB of RAM, we had to fit MS-DOS 3.0 and the application!

For a month, C language developers had been twisting the problem in all directions, even
reverse engineering with SOURCER (a disassembler) to eliminate non-essential parts of
executable code.

I analyzed the problem that was presented to me. Starting from scratch, I created, alone,
in a week, a perfectly operational prototype that met the specifications. For three years,
from 1992 to 1995, I created numerous versions of this application which was used on the
assembly lines of several automobile manufacturers.

Boundaries between language and application

All programming languages are shared like this :

Page 27

• an interpreter and executable source code: BASIC, PHP, MySQL, JavaScript, etc...
The application is contained in one or more files which will be interpreted whenever
necessary. The system must permanently host the interpreter running the source
code;

• a compiler and/or assembler: C, Java, etc. Some compilers generate native code,
that is to say executable specifically on a system. Others, like Java, compile
executable code on a virtual Java machine.

The FORTH language is an exception. It integrates :

• an interpreter capable of executing any word in the FORTH language

• a compiler capable of extending the dictionary of FORTH words

What is a FORTH word?

A FORTH word designates any dictionary expression composed of ASCII characters and
usable in interpretation and/or compilation: words allows you to list all the words in the
FORTH dictionary.

Certain FORTH words can only be used in compilation: if else then for example.

With the FORTH language, the essential principle is that we do not create an application.
In FORTH, we extend the dictionary! Each new word you define will be as much a part of
the FORTH dictionary as all the words pre-defined when FORTH starts. Example:

: typeToLoRa (--)

 0 echo ! \ disable display echo from terminal

 ['] serial2-type is type

 ;

: typeToTerm (--)

 ['] default-type is type

 -1 echo ! \ enable display echo from terminal

 ;

We create two new words: typeToLoRa and typeToTerm which will complete the
dictionary of pre-defined words.

A word is a function?

Yes and no. In fact, a word can be a constant, a variable, a function... Here, in our
example, the following sequence :

 : typeToLoRa ...code... ;

would have its equivalent in C langage :

 void typeToLoRa() { ...code... }

In FORTH language, there is no limit between language and application.

Page 28

In FORTH, as in C language, you can use any word already defined in the definition of a
new word.

Yes, but then why FORTH rather than C?

I was expecting this question.

In C language, a function can only be accessed through the main function main(). If this
function integrates several additional functions, it becomes difficult to find a parameter
error in the event of a malfunction of the program.

On the contrary, with FORTH it is possible to execute - via the interpreter - any word pre-
defined or defined by you, without having to go through the main word of the program.

The FORTH interpreter is immediately accessible on the ESP32 card via a terminal type
program and a USB link between the ESP32 card and the PC.

The compilation of programs written in FORTH language is carried out in the ESP32 card
and not on the PC. There is no upload. Example:

: >gray (n -- n')

 dup 2/ xor \ n' = n xor (1 time right shift logic)

 ;

This definition is transmitted by copy/paste into the terminal. The FORTH
interpreter/compiler will parse the stream and compile the new word >gray.

In the definition of >gray, we see the sequence dup 2/ xor. To test this sequence,
simply type it in the terminal. To execute >gray, simply type this word in the terminal,
preceded by the number to transform.

FORTH language compared to C language

This is my least favorite part. I don't like to compare the FORTH language to the C
language. But as almost all developers use the C language, I'm going to try the exercise.

Here is a test with if() in C language:

if(j > 13){ // If all bits are received

 rc5_ok = 1; // Decoding process is OK

 detachInterrupt(0); // Disable external interrupt (INT0)

 return;

}

Test with if in FORTH language (code snippet) :

var-j @ 13 > \ If all bits are received

 if

 1 rc5_ok ! \ Decoding process is OK

 di \ Disable external interrupt (INT0)

 exit

 then

Page 29

Here is the initialization of registers in C langage :

void setup() {

 // Timer1 module configuration

 TCCR1A = 0;

 TCCR1B = 0; // Disable Timer1 module

 TCNT1 = 0; // Set Timer1 preload value to 0 (reset)

 TIMSK1 = 1; // enable Timer1 overflow interrupt

}

The same definition in FORTH langage :

: setup

 \ Timer1 module configuration

 0 TCCR1A !

 0 TCCR1B ! \ Disable Timer1 module

 0 TCNT1 ! \ Set Timer1 preload value to 0 (reset)

 1 TIMSK1 ! \ enable Timer1 overflow interrupt

;

What FORTH allows you to do compared to the C language

We understand that FORTH immediately gives access to all the words in the dictionary,
but not only that. Via the interpreter, we also access the entire memory of the ESP32
card. Connect to the ESP32 board that has ESP32forth installed, then simply type :

hex here 100 dump

You should find this on the terminal screen :

3FFEE964 DF DF 29 27 6F 59 2B 42 FA CF 9B 84

3FFEE970 39 4E 35 F7 78 FB D2 2C A0 AD 5A AF 7C 14 E3 52

3FFEE980 77 0C 67 CE 53 DE E9 9F 9A 49 AB F7 BC 64 AE E6

3FFEE990 3A DF 1C BB FE B7 C2 73 18 A6 A5 3F A4 68 B5 69

3FFEE9A0 F9 54 68 D9 4D 7C 96 4D 66 9A 02 BF 33 46 46 45

3FFEE9B0 45 39 33 33 2F 0D 08 18 BF 95 AF 87 AC D0 C7 5D

3FFEE9C0 F2 99 B6 43 DF 19 C9 74 10 BD 8C AE 5A 7F 13 F1

3FFEE9D0 9E 00 3D 6F 7F 74 2A 2B 52 2D F4 01 2D 7D B5 1C

3FFEE9E0 4A 88 88 B5 2D BE B1 38 57 79 B2 66 11 2D A1 76

3FFEE9F0 F6 68 1F 71 37 9E C1 82 43 A6 A4 9A 57 5D AC 9A

3FFEEA00 4C AD 03 F1 F8 AF 2E 1A B4 67 9C 71 25 98 E1 A0

3FFEEA10 E6 29 EE 2D EF 6F C7 06 10 E0 33 4A E1 57 58 60

3FFEEA20 08 74 C6 70 BD 70 FE 01 5D 9D 00 9E F7 B7 E0 CA

3FFEEA30 72 6E 49 16 0E 7C 3F 23 11 8D 66 55 EC F6 18 01

3FFEEA40 20 E7 48 63 D1 FB 56 77 3E 9A 53 7D B6 A7 A5 AB

3FFEEA50 EA 65 F8 21 3D BA 54 10 06 16 E6 9E 23 CA 87 25

3FFEEA60 E7 D7 C4 45

This corresponds to the contents of flash memory.

And the C language couldn't do that?

Yes, but not as simple and interactive as in FORTH language.

Page 30

But why a stack rather than variables?

The stack is a mechanism implemented on almost all microcontrollers and
microprocessors. Even the C language leverages a stack, but you don't have access to it.

Only the FORTH language gives full access to the data stack. For example, to make an
addition, we stack two values, we execute the addition, we display the result: 2 5 + .
displays 7.

It's a little destabilizing, but when you understand the mechanism of the data stack, you
greatly appreciate its formidable efficiency.

The data stack allows data to be passed between FORTH words much more quickly than
by processing variables as in C language or any other language using variables.

Are you convinced?

Personally, I doubt that this single chapter will irremediably convert you to programming
in the FORTH language. When trying to master ESP32 cards, you have two options :

• program in C language and use the numerous libraries available. But you will
remain locked into the capabilities of these libraries. Adapting codes to C language
requires real knowledge of programming in C language and mastering the
architecture of ESP32 cards. Developing complex programs will always be a
problem.

• try the FORTH adventure and explore a new and exciting world. Of course, it won't
be easy. You will need to understand the architecture of ESP32 cards, the registers,
the register flags in depth. In return, you will have access to programming perfectly
suited to your projects.

Are there any professional applications written in FORTH?

Oh yes! Starting with the HUBBLE space telescope, certain components of which were
written in FORTH language.

The German TGV ICE (Intercity Express) uses RTX2000 processors to control motors via
power semiconductors. The machine language of the RTX2000 processor is the FORTH
language.

Page 31

This same RTX2000 processor was used for the Philae probe which attempted to land on a
comet.

The choice of the FORTH language for professional applications turns out to be interesting
if we consider each word as a black box. Each word must be simple, therefore have a
fairly short definition and depend on few parameters.

During the debugging phase, it becomes easy to test all the possible values processed by
this word. Once made perfectly reliable, this word becomes a black box, that is to say a
function in which we have absolute confidence in its proper functioning. From word to
word, it is easier to make a complex program reliable in FORTH than in any other
programming language.

But if we lack rigor, if we build gas plants, it is also very easy to get an application that
works poorly, or even to completely crash FORTH!

Finally, it is possible, in FORTH language, to write the words you define in any human
language. However, the usable characters are limited to the ASCII character set between
33 and 127. Here is how we could symbolically rewrite the words high and low:

\ Turn a port pin on, dont change the others.

: __/ (pinmask portadr --)

 mset

 ;

\ Turn a port pin off, dont change the others.

: __ (pinmask portadr --)

 mclr

 ;

From this moment, to turn on the LED, you can type:

O __/ \ turn LED on

Page 32

Yes! The sequence _O_ __/ is in FORTH language!

With ESP32forth, here are all the characters at your disposal that can compose a FORTH
word :

~}|{zyxwvutsrqponmlkjihgfedcba`_

^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?

>=<;:9876543210/.-,+*)('&%$#"!

Good programming.

Page 33

Using numbers with ESP32Forth
We started ESP32Forth without problem. We will now delve into some manipulations with
numbers to understand how to master the microcontroller in FORTH language.

Like many books, we could start with a trivial example program, flashing LEDs for
example. Like this for example:

 define LEDs GPIOs
25 constant ledRED
26 constant ledYELLOW
27 constant ledGREEN

\ define masks for red yellow and green LEDs
1 ledRED defMASK: mLED_RED
1 ledYELLOW defMASK: mLED_YELLOW
1 ledGREEN defMASK: mLED_GREEN

\ initialisation GPIO G25 G26 and G27 in output mode
: GPIO.init (--)
 1 mLED_RED GPIO_ENABLE_REG regSet
 1 mLED_YELLOW GPIO_ENABLE_REG regSet
 1 mLED_GREEN GPIO_ENABLE_REG regSet
 ;
\ define a ON and OFF sequence
: GPIO.on.off.sequence { position mask delay -- }
 1 position mask GPIO_OUT_W1TS_REG regSet
 delay ms
 1 position mask GPIO_OUT_W1TC_REG regSet ;

This code, apparently simple, already requires a knowledge base, such as the notion of
memory address, register, binary masks, hexadecimal numbers.

We will therefore start by addressing these basic notions by inviting you to carry out
simple manipulations.

Numbers with the FORTH interpreter

When ESP32Forth starts, the TERA TERM terminal window (or any other terminal program
of your choice) should indicate that ESP32Forth is available. Press the ENTER key on the
keyboard once or twice . ESP32Forth responds with confirmation of successful execution
ok. .

We are going to test the entry of two numbers, here
25 and 33 . Type these numbers, then ENTER on the
keyboard. ESP32Forth always responds with ok. .
You have just stacked two numbers on the
ESP32Forth language stack. Now enter + . then
press the ENTER key . ESP32Forth displays the result:

Page 34

This operation was processed by the FORTH interpreter.

ESP32Forth, like all versions of the FORTH language, has two states:

 interpreter : the state you have just tested by performing a simple sum of two
numbers;

 compiler : a state which allows new words to be defined. This aspect will be
explored further later.

Entering numbers with different numeric bases

In order to fully assimilate the explanations, you are invited to test all the examples via
the TERA TERM terminal window.

Numbers can be entered naturally. In decimal, it will ALWAYS be a sequence of numbers,
example:

-1234 5678 + .

The result of this example will show 4444. FORTH numbers and words must be separated
by at least one space character . The example works perfectly if you type a number or
word per line:

-1234

5678

+

.

Numbers can be prefixed if you want to enter values other than in decimal form:

 $ sign to indicate that the number is a hexadecimal value;

Example :

255 . \ display 255

$ff . \ display 255

The purpose of these prefixes is to avoid any error of interpretation in the case of similar
values:

$0305
0305

are not equal numbers if the hexadecimal number base is not explicitly defined !

Change of numerical base

ESP32Forth has words allowing you to change the numerical base:

 hex to select the hexadecimal numeric base;

 binary to select the binary number base;

 decimal to select the decimal numeric base.

Page 35

Any number entered in a numeric base must respect the syntax of numbers in this base:

3E7F

will cause an error if you are in decimal base.

hex 3e7f

will work perfectly in hexadecimal base. The new numerical base remains valid as long as
another numerical base is not selected:

hex
$0305
0305

are equal numbers !

Once a number is dropped onto the data stack in a numeric base, its value no longer
changes. For example, if you drop the value $ff on the data stack, this value which is
255 in decimal, or 11111111 in binary, will not change if we return to decimal:

hex ff decimal . \ display: 255

At the risk of insisting, 255 in decimal is the same value as $ff in hexadecimal!

In the example given at the start of the chapter, we define a constant in hexadecimal:

25 constant ledRED

If we type:

hex ledRED .

This will display the contents of this constant in hexadecimal form. The change of base
has no consequences on the final operation of the FORTH program.

Binary and hexadecimal

The modern binary number system, the basis of binary code, was invented by Gottfried
Leibniz in 1689 and appears in his article Explanation of Binary Arithmetic in 1703.

In his article, LEIBNITZ uses only the characters 0 and 1 to describe all numbers:

: bin0to15 (--)

 binary

 $10 0 do

 cr i .

 loop

 cr decimal ;

bin0to15 \ display:
0
1
10
11
100
101
110
111

Page 36

1000
1001
1010
1011
1100
1101
1110
1111

Is it necessary to understand binary coding? I will say yes and no. Not for everyday uses.
Yes to understand the programming of microcontrollers and mastery of logical operators.

It was Georges Boole who formally described logic. His work was forgotten until the
appearance of the first computers. It was Claude Shannon who realized that this algebra
could be applied in the design and analysis of electrical circuits.

Boolean algebra deals exclusively with 0 and 1 .

The fundamental components of all our computers and digital memories use binary coding
and Boolean algebra.

The smallest unit of storage is the byte. It is a space made up of 8 bits. A bit can only
have two states: 0 or 1 . The smallest value that can be stored in a byte is 00000000 ,
with the largest being 11111111 . If we cut a byte in two, we will have:

 four low-order bits, which can take the values 0000 to 1111 ;

 four most significant bits which can take one of these same values.

If we number all the combinations between 0000 and 1111, starting from 0, we arrive at
15:

: bin0to15 (--)

 binary

 $10 0 do

 cr i .

 i hex . binary

 loop

 cr decimal ;

bin0to15 \ display:

0 0

1 1

10 2

11 3

100 4

101 5

110 6

111 7

1000 8

1001 9

1010 A

1011 B

Page 37

1100 C

1101 D

1110 E

1111 F

In the right part of each line, we display the same value as in the left part, but in
hexadecimal: 1101 and D are the same values!

Hexadecimal representation was chosen to represent numbers in computing for practical
reasons. For the high or low order part of a byte, on 4 bits, the only combinations of
hexadecimal representation will be between 0 and F. Here, the letters A to F are
hexadecimal numbers !

$3E \ is more readable as 00111110

Hexadecimal representation therefore offers the advantage of representing the content of
a byte in a fixed format, from 00 to FF . In decimal, 0 to 255 should have been used.

Size of numbers on FORTH data stack

ESP32forth uses a data stack of 32 bits of memory size, or 4 bytes (8 bits x 4 = 32 bits).
The smallest hexadecimal value that can be stacked on the FORTH stack will be 00000000
, the largest will be FFFFFFFF . Any attempt to stack a larger value results in clipping of
that value:

hex

abcdefabcdefabcdef . \ display: EFABCDEF

Let's stack the largest possible value in 32-bit (4 byte) hexadecimal format:

decimal

$ffffffff . \ display: -1

I see you surprised, but this result is normal ! Word . Shows the value that is at the top
of the data stack in its signed form. To display the same unsigned value, you must use the
word u. :

$ffffffff u. \ display: 4294967295

This is because of the 32 bits used by FORTH to represent an integer, the most significant
bit is used as the sign:

 if the most significant bit is 0 , the number is positive;

 if the most significant bit is 1 , the number is negative.

So, if you followed correctly, our decimal values 1 and -1 are represented on the stack, in
binary format in this form:

binary

00000000000000000000000000000001 \ push 1 on stack

11111111111111111111111111111111 \ push -1 on stack

Page 38

And this is where we will call on our mathematician, Mr LEIBNITZ, to add these two
numbers in binary. If we do like in school, starting from the right, you will simply have to
respect this rule: 1 + 1 = 10 in binary. We put the results on a third line:

00000000000000000000000000000001

11111111111111111111111111111111

 10

Next step :

00000000000000000000000000000001

11111111111111111111111111111111

 10

 100

At the end, we will have the result:

 00000000000000000000000000000001

 11111111111111111111111111111111

100000000000000000000000000000000

But since this result has a 33rd most significant bit at 1, knowing that the integer format is
strictly limited to 32 bits, the final result is 0 . It is surprising ? Yet this is what every
digital clock does. Hide the hours. When you reach 59, add 1, the clock will display 0.

The rules of decimal arithmetic, namely -1 + 1 = 0, have been perfectly respected in
binary logic!

Memory access and logic operations

The data stack is in no way a data storage space. Its size is also very limited. And the
stack is shared by many words. The order of the parameters is fundamental. An error can
cause malfunctions. Let's take the case of the word dump which displays the contents of a
memory space:

hex

0 variable score

score 10 dump \ display:

1073670412 00 00 00 00

1073670416 55 51 54 55 48 51

In bold and red we find the four bytes reserved for storing a value in our score variable.
Let's store any value in score :

decimal

1900 score !

hex

score 10 dump \ display :

3FFEE90C 6C 07 00 00

3FFEE910 37 33 36 37 30 33 34 34 79 64 31 30

We find the four bytes containing our decimal value 1900, 0000076C in hexadecimal. Still
surprised? So it is the effect of binary coding and its subtleties that are the cause. In

Page 39

memory, bytes are stored starting with the least significant ones. Upon recovery, the
transformation mechanism is transparent:

score @ . \ display 1900

Let's go back to the code that makes an LED blink. Extract :

1 mLED_RED GPIO_ENABLE_REG regSet

This code activates a GPIO output associated with an LED. The word GPIO_ENABLE_REG is
a constant, the content of which is a mask pointing to this LED. We might as well have
written this:

1 25 lshift GPIO_ENABLE_REG !

Here, the word lshift performs a logical shift of 25 bits to the left:

\ before shift : %000000000000000000000000000000 1

\ after shift: %000000 1 0000000000000000000000000

As a reminder, GPIOs 2are numbered from 0 to 31. To activate another GPIO, for example
GPIO17, we would have executed this:

1 17 lshift GPIO_ENABLE_REG !

Suppose we want to activate GPIOs 17 and 25 in a single command. We will execute this:

1 25 lshift

1 17 lshift or GPIO_ENABLE_REG !

What have we done? Here are the details of the operations:

\ 1 25 lshift \ %00000010000000000000000000000000

\ 1 17 lshift \ %00000010000000010000000000000000

\ or \ %00000010000000010000000000000000

The word or has performed an operation that combines the two offsets into a single
binary mask.

Let's return to our score variable. We want to isolate the least significant byte. Several
solutions are available to us. One solution uses binary masking with the logical operator
and :

ex
score @ . \ display: 76C

score @

$000000FF and . \ display: 6C

To isolate the second byte from the right:

score @

$0000FF00 and . \ display: 0700

Here we had fun with the content of a variable. To master a microcontroller like the one
mounted on the ESP32 card, the mechanisms are hardly different. The hardest part is

2 General Purpose Input/Output = General purpose input-output

Page 40

finding the right registers. This will be the subject of another chapter.

To conclude this chapter, there is still a lot to learn about binary logic and the different
possible digital codings. If you have tested the few examples given here, you certainly
understand that FORTH is an interesting language:

 thanks to its interpreter which allows numerous tests to be carried out interactively
without requiring recompilation by uploading code;

 a dictionary most of the words of which are accessible from the interpreter;

 a compiler allowing you to add new words on the fly , then test them immediately.

Finally, which doesn't spoil anything, the FORTH code, once compiled, is certainly as
efficient as its equivalent in C language.

Page 41

A real 32-bit FORTH with ESP32Forth
ESP32Forth is a real 32-bit FORTH. What does it mean?

The FORTH language favors the manipulation of integer values. These values can be
literal values, memory addresses, register contents, etc.

Values on the data stack

When ESP32Forth starts, the FORTH interpreter is available. If you enter any number, it
will be dropped onto the stack as a 32-bit integer :

35

If we stack another value, it will also be stacked. The previous value will be pushed down
one position :

45

To add these two values, we use a word, here +:

+

Our two 32-bit integer values are added together and the result is dropped onto the stack.
To display this result, we will use the word .:

. \ display 80

In FORTH language, we can concentrate all these operations in a single line :

35 45 + . \ display 80

Unlike the C language, we do not define an int8 or int16 or int32 type.

With ESP32Forth, an ASCII character will be designated by a 32-bit integer, but whose
value will be bounded [32..255]. Example :

67 emit \ display C

Values in memory

ESP32Forth allows you to define constants and variables. Their content will always be in
32-bit format. But there are situations where that doesn't necessarily suit us. Let's take a
simple example, defining a Morse code alphabet. We only need a few bytes :

• one to define number of marks in Morse code character

• one or more bytes for Morse code marks

create mA (-- addr)

 2 c,

 char . c, char - c,

Page 42

create mB (-- addr)

 4 c,

 char - c, char . c, char . c, char . c,

create mC (-- addr)

 4 c,

 char - c, char . c, char - c, char . c,

Here we define only 3 words, mA, mB and mC. In each word, several bytes are stored. The
question is: how will we retrieve the information in these words ?

The execution of one of these words deposits a 32-bit value, a value which corresponds to
the memory address where we stored our Morse code information. It is the word c@ that
we will use to extract the Morse code from each letter :

mA c@ . \ display 2

mB c@ . \ display 4

The first byte placed on the stack will be used to manage a loop to display the code of a
character in Morse code :

: .morse (addr --)

 dup 1+ swap c@ 0 do

 dup i + c@ emit

 loop

 drop

 ;

mA .morse \ display .-

mB .morse \ display -...

mC .morse \ display -.-.

There are plenty of certainly more elegant examples. Here we show a way to manipulate
8-bit values, our bytes, while operating these bytes on a 32-bit stack.

Word processing depending on data size or type

In all other languages, we have a generic word, like echo (in PHP) which displays any type
of data. Whether integer, real, string, we always use the same word. Example in PHP
language:

$bread = "Baked bread";

$price = 2.30;

echo $bread . " : " . $price;

// display Baked bread: 2.30

For all programmers, this way of doing things is THE STANDARD! So how would FORTH
do this example in PHP?

: bread s" Baked bread" ;

: price s" 2.30" ;

bread type s" : " type price type

Page 43

\ display Baked bread: 2.30

Here, the word type tells us that we have just processed a character string.

Where PHP (or any other language) has a generic function and a parser, FORTH
compensates with a single data type, but adapted processing methods which inform us
about the nature of the data processed.

Here is an absolutely trivial case for FORTH, displaying a number of seconds in HH:MM:SS
format:

: :##

 # 6 base !

 # decimal

 [char] : hold

 ;

: .hms (n --)

 <# :## :## # # #> type

 ;

4225 .hms \ display: 01:10:25

I love this example because, to date, NO OTHER PROGRAMMING LANGUAGE is
capable of achieving this HH:MM:SS conversion so elegantly and concisely.

You have understood, the secret of FORTH is in its vocabulary.

Conclusion

FORTH has no data typing. All data passes through a data stack. Each position in the stack
is ALWAYS a 32-bit integer!

That's all there is to know.

Purists of hyper-structured and verbose languages, such as C or Java, will certainly cry
heresy. And here, I will allow myself to answer them : why do you need to type your
data ?

Because it is in this simplicity that the power of FORTH lies : a single stack of data with an
untyped format and very simple operations.

And I'm going to show you what many other programming languages can't do, define new
definition words :

: morse: (comp: c -- | exec --)

 create

 c,

 does>

 dup 1+ swap c@ 0 do

 dup i + c@ emit

 loop

 drop space

Page 44

 ;

2 morse: mA char . c, char - c,

4 morse: mB char - c, char . c, char . c, char . c,

4 morse: mC char - c, char . c, char - c, char . c,

mA mB mC \ display .- -... -.-.

Here, the word morse: has become a definition word, in the same way as constant or
variable...

Because FORTH is more than a programming language. It is a meta-language, that is to
say a language to build your own programming language....

Page 45

Comments and debugging
There is no IDE3 to manage and present code written in FORTH language in a structured
way. At worst you use an ASCII text editor, at best a real IDE and text files:

 edit or wordpad on Windows

 edit under Linux

 PsPad under windows

 Netbeans under Windows or Linux...

Here is a code snippet that could be written by a beginner:

: cycle.stop -1 +to MAX_LIGHT_TIME MAX_LIGHT_TIME 0 = if
LOW myLIGHTS pin else 0 rerun then ;

This code will be perfectly compiled by ESP32forth. But will it remain understandable in
the future if it needs to be modified or reused in another application?

Write readable FORTH code

Let's start with the name of the word to be defined, here cycle.stop. ESP32forth allows
you to write very long word names. The size of the defined words has no influence on the
performance of the final application. We therefore have a certain freedom to write these
words :

 like object programming in JavaScript: cycle.stop

 the Camel wayCoding cycleStop

 for programmers wanting very understandable code cycle-stop-lights

 programmer who likes concise code: csl

There is no rule. The main thing is that you can easily reread your FORTH code. However,
computer programmers in FORTH language have certain habits:

 constants in uppercase characters MAX_LIGHT_TIME_NORMAL_CYCLE

 word defining other words defPin: , i.e. word followed by a colon;

 address transformation word >date , here the address parameter is incremented
by a certain value to point to the appropriate data;

 memory storage word date@ or date!

 Data display word .date

3 Integrated Development Environment = Integrated Development Environment

Page 46

And what about naming FORTH words in a language other than English? Here again, only
one rule: total freedom ! Be careful though, ESP32forth does not accept names written
in alphabets other than the Latin alphabet. However, you can use these alphabets for
comments:

: .date \ Плакат сегодняшней даты
 ….coded… ;

Or

: .date \海報今天的日期
 ….coded… ;

Source code indentation

Whether the code is two lines, ten lines or more has no effect on the performance of the
code once compiled. So, you might as well indent your code in a structured way:

 one line per word of control structure if else then , begin while repeat… For
the word if, we can precede it with the logical test that it will process;

 a line by execution of a predefined word, preceded if necessary by the parameters
of this word.

Example :

 60 constant MAX_LIGHT_TIME_NORMAL_CYCLE

: cycle.stop

 -1 +to MAX_LIGHT_TIME

 MAX_LIGHT_TIME 0 =

 if

 LOW myLIGHTS pin

 else

 0 rerun

 then

;

If the code processed in a control structure is sparse, the FORTH code can be compacted:

: cycle.stop

 -1 +to MAX_LIGHT_TIME

 MAX_LIGHT_TIME 0 =

 if LOW myLIGHTS pin

 else 0 rerun then

;

This is often the case with case of endof endcase structures ;

: socketError (--)
 errno dup
 case
 2 of ." No such file " endof
 5 of ." I/O error " endof
 9 of ." Bad file number " endof

Page 47

 22 of ." Invalid argument " endof
 endcase
 . quit
 ;

Comments

Like any programming language, the FORTH language allows the addition of comments in
the source code. Adding comments has no impact on the performance of the application
after compiling the source code.

In FORTH language, we have two words to delimit comments:

 the word (must be followed by at least one space character. This comment is
completed by the character) ;

 the word \ must be followed by at least one space character. This word is followed
by a comment of any size between this word and the end of the line.

The word (is widely used for stack comments. Examples:

dup (n -- nn)
swap (n1 n2 -- n2 n1)
drop (n --)
emit (c --)

Stack comments

As we have just seen, they are marked by (and) . Their content has no effect on the
FORTH code during compilation or execution. So we can put anything between (and) .
As for the stack comments, we will remain very concise. The -- sign symbolizes the
action of a FORTH word. The indications before -- correspond to the data placed on the
data stack before the execution of the word. The indications after -- correspond to the
data left on the data stack after execution of the word. Examples :

 words (--) means that this word does not process any data on the data stack;

 emit (c --) means that this word processes data as input and leaves nothing
on the data stack ;

 bl (-- 32) means that this word does not process any input data and leaves
the decimal value 32 on the data stack;

There is no limitation on the amount of data processed before or after execution of the
word. As a reminder, the indications between (and) are only there for information.

Meaning of stack parameters in comments

To begin with, a small but very important clarification is necessary. This is the size of the
data on stack. With ESP32Forth, the stack data takes up 4 bytes. So these are integers in

Page 48

32-bit format. However, some words process data in 8-bit format. So what do we put on
the data stack? With ESP32Forth, it will ALWAYS be 32 BIT DATA ! An example with the
c word! :

create myDelemiter
 0 c,
64 myDelimiter c! (c addr --)

Here, the parameter c indicates that we stack an integer value in 32-bit format, but
whose value will always be included in the interval [0..255].

The standard parameter is always n . If there are several integers, we will number them:
n1 n2 n3 , etc.

We could therefore have written the previous example like this :

create myDelemiter

 0 c,

64 myDelimiter c! (n1 n2 --)

But it is much less explicit than the previous version. Here are some symbols that you will
see throughout the source codes:

 addr indicates a literal memory address or delivered by a variable;

 c indicates an 8-bit value in the interval [0..255]

 d indicates a double precision value.
Not used with ESP32Forth which is already in 32-bit format;

 fl indicates a Boolean value, 0 or non-zero;

 n indicates an integer. 32-bit signed integer for ESP32Forth;

 str indicates a character string. Equivalent to addr len --

 u indicates an unsigned integer

Nothing prevents us from being a little more explicit:

: SQUARE (n -- n-exp2)
 dup *
 ;

Word Definition Word Comments

Definition words use create and does> . For these words, it is advisable to write stack
comments like this:

\ define a command or data stream for SSD1306
: streamCreate: (comp: <name> | exec: -- addr len)
 create
 here \ leave current dictionnary pointer on stack
 0 c, \ initial lenght data is 0
 does>
 dup 1+ swap c@

Page 49

 \ send a data array to SSD1306 connected via I2C bus
 sendDatasToSSD1306
 ;

Here, the comment is split into two parts by the character | :

 on the left, the action part when the definition word is executed, prefixed by comp:

 on the right the action part of the word that will be defined, prefixed with exec:

At the risk of insisting, this is not a standard. These are only recommendations.

Textual comments

They are indicated by the word \ followed by at least one space character and
explanatory text:

\ store at <WORD> addr length of datas compiled beetween

\ <WORD> and here

: ;endStream (addr-var len ---)
 dup 1+ here
 swap - \ calculate cdata length
 \ store c in first byte of word defined by streamCreate:
 swap c!
 ;

These comments can be written in any alphabet supported by your source code editor:

\ 儲存在 <WORD> addr 之間編譯的資料長度

\ <WORD> 和這裡

: ;endStream (addr-var len ---)

 dup 1+ here

 swap - \ 計算 cdata長度

 \ 將 c 儲存在由 StreamCreate 定義的字的第一個位元組中：

 swap c!

 ;

Comment at the beginning of the source code

With intensive programming practice, you quickly find yourself with hundreds or even
thousands of source files. To avoid file choice errors, it is strongly recommended to mark
the start of each source file with a comment:

\ *************************************
\ Manage commands for OLED SSD1306 128x32 display
\ Filename: SSD10306commands.fs
\ Date: 21 may 2023
\ Updated: 21 may 2023
\ File Version: 1.0
\ MCU: ESP32-WROOM-32
\ Forth: ESP32forth all versions 7.x++
\ Copyright: Marc PETREMANN
\ Author: Marc PETREMANN
\ GNU General Public License
\ **************************************

Page 50

All this information is at your discretion. They can become very useful when you come
back to the contents of a file months or years later.

To conclude, do not hesitate to comment and indent your source files in FORTH language.

Diagnostic and tuning tools

The first tool concerns the compilation or interpretation alert:

3 5 25 --> : TEST (---)
 ok
3 5 25 --> [HEX] ASCII A DDUP \ DDUP don't exist

Here, the word DDUP does not exist. Any compilation after this error will fail.

The decompiler
In a conventional compiler, the source code is transformed into executable code
containing the reference addresses to a library equipping the compiler. To have executable
code, you must link the object code. At no time can the programmer have access to the
executable code contained in his library with the resources of the compiler alone.

With ESP32Forth, the developer can decompile their definitions. To decompile a word,
simply type see followed by the word to decompile:

: C>F (øC --- øF) \ Conversion Celsius in Fahrenheit
 9 5 */ 32 +
 ;
see c>f
\ display:
: C>F
 9 5 */ 32 +
;

Many words in ESP32Forth's FORTH dictionary can be decompiled.

Decompiling your words allows you to detect possible compilation errors.

Memory dump

Sometimes it is desirable to be able to see the values that are in memory. The word dump
accepts two parameters: the starting address in memory and the number of bytes to
display:

create myDATAS 01 c, 02 c, 03 c, 04 c,
hex
myDATAS 4 dump \ displays :
3FFEE4EC 01 02 03 04

Data stack monitor

The contents of the data stack can be displayed at any time using the word .s . Here is
the definition of the word .DEBUG which exploits .s :

variable debugStack

Page 51

: debugOn (--)
 -1 debugStack !
 ;

: debugOff (--)
 0 debugStack !
 ;

: .DEBUG
 debugStack @
 if
 cr ." STACK: " .s
 key drop
 then
 ;

To use .DEBUG, simply insert it in a strategic place in the word to be debugged:

\ example of use:

: myTEST

 128 32 do

 i .DEBUG

 emit

 loop

 ;

Here, we will display the contents of the data stack after execution of word i in our do
loop . We activate the focus and run myTEST :

debugOn
myTest
\ displays:
\ STACK: <1> 32
\ 2
\ STACK: <1> 33
\ 3
\ STACK: <1> 34
\ 4
\ STACK: <1> 35
\ 5
\ STACK: <1> 36
\ 6
\ STACK: <1> 37

\ 7
\ STACK: <1> 38

When debugging is enabled by debugOn , each display of the contents of the datastack
pauses our do loop. Run debugOff so that the myTEST word executes normally.

Page 52

Dictionary / Stack / Variables / Constants

Expand Dictionary

Forth belongs to the class of woven interpretive languages. This means that it can
interpret commands typed on the console, as well as compile new subroutines and
programs.

The Forth compiler is part of the language and special words are used to create new
dictionary entries (i.e. words). The most important are : (start a new definition) and ;
(finishes the definition). Let's try this by typing :

: *+ * + ;

What happened? The action of : is to create a new dictionary entry named *+ and switch
from interpretation mode to compilation mode. In compile mode, the interpreter searches
for words and, rather than executing them, installs pointers to their code. If the text is a
number, instead of pushing it onto the stack, ESP32forth constructs the number in the
dictionary space allocated for the new word, following special code that puts the stored
number on the stack each time the word is executed. The execution action of *+ is
therefore to sequentially execute the previously defined words * and +.

Word ; is special. It is an immediate word and it is always executed, even if the system
is in compile mode. Which makes ; is twofold. First, it installs code that returns control to
the next external level of the interpreter, and second, it returns from compilation mode to
interpretation mode.

Now let's try this new word :

decimal 5 6 7 *+ . \ display 47 ok<#,ram>

This example illustrates two main work activities in Forth : adding a new word to the
dictionary, and trying it as soon as it has been defined.

Dictionary management

The word forget followed by the word to delete will remove all dictionary entries you
have made since that word :

: test1 ;

: test2 ;

: test3 ;

forget test2 \ delete test2 and test3 in dictionnary

Page 53

Stacks and reverse Polish notation

Forth has an explicitly visible stack that is used to pass numbers between words
(commands). Using Forth effectively forces you to think in terms of the stack. This can be
difficult at first, but as with anything, it gets much easier with practice.

In FORTH, The pile is analogous to a pile of cards with numbers written on them.
Numbers are always added to the top of the stack and removed from the top of the stack.
ESP32forth integrates two stacks: the parameter stack and the feedback stack, each
consisting of a number of cells that can hold 32-bit numbers.

The FORTH input line :

decimal 2 5 73 -16

leaves the parameter stack as it is

Cell Content comment
0 -16 (TOS) Top of stack
1 73 (NOS) Next in stack
2 5
3 2

We will typically use zero-based relative numbering in Forth data structures such as
stacks, arrays, and tables. Note that when a sequence of numbers is entered like this, the
rightmost number becomes TOS and the leftmost number is at the bottom of the stack.

Let's continue with this:

+ - * .

The operations would produce successive stack operations :

After the two lines, the console displays :

decimal 2 5 73 -16 \ display: 2 5 73 -16 ok

+ - * . \ display: -104 ok

Note that ESP32forth conveniently displays the stack elements when interpreting each line
and that the value of -16 is displayed as a 32-bit unsigned integer. Furthermore, the word

Page 54

2
5
73
-16

2
5
57

2
-52 -104

+ - * .

. consumes data value -104, leaving the stack empty. If we execute . on the now
empty stack, the external interpreter aborts with a stack pointer error STACK UNDERFLOW
ERROR.

The programming notation where the operands appear first, followed by the operator(s) is
called Reverse Polish Notation (RPN).

Handling the parameter stack

Being a stack-based system, ESP32forth must provide ways to put numbers on the stack,
remove them and rearrange their order. We have already seen that we can put numbers
on the stack simply by typing them. We can also integrate numbers into the definition of a
FORTH word.

The word drop removes a number from the top of the stack thus putting the next one on
top. The word swap exchanges the first 2 numbers. dup copies the number at the top,
pushing all other numbers down. rot rotates the first 3 numbers. These actions are

presented below.

The Return Stack and Its Uses

When compiling a new word, ESP32forth establishes links between the calling word and
previously defined words that are to be invoked by the execution of the new word. This
linking mechanism, at runtime, uses the return stack. The address of the next word to be
invoked is placed on the back stack so that when the current word has finished executing,
the system knows where to move to the next word. Since words can be nested, there
must be a stack of these return addresses.

In addition to serving as a reservoir of return addresses, the user can also store and
retrieve from the return stack, but this must be done carefully because the return stack is
essential to program execution. If you use the return stack for temporary storage, you
must return it to its original state, otherwise you will likely crash the ESP32forth system.
Despite the danger, there are times when using return stack as temporary storage can
make your code less complex.

Page 55

2
5
73
-16

2
5
73
drop

2
73
5

swap

73
5
2
rot

73
5
2
2
dup

To store on the return stack, use >r to move the top of the parameter stack to the top of
the return stack. To retrieve a value, r> moves the top value from the return stack back to
the top of the parameter stack. To simply remove a value from the top of the return stack,
there is the word rdrop. The word r@ copies the top of the return stack back into the
parameter stack.

Memory usage

In ESP32forth, 32-bit numbers are fetched from memory to the stack by the word @
(fetch) and stored from the top to memory by the word ! (store). @ expects an address on
the stack and replaces the address with its contents. ! expects a number and an address
to store it. It places the number in the memory location referenced by the address,
consuming both parameters in the process.

Unsigned numbers that represent 8-bit (byte) values can be placed in character-sized
characters. memory cells using c@ and c!.

create testVar

 cell allot

$f7 testVar c!

testVar c@ . \ display 247

Variables

A variable is a named location in memory that can store a number, such as the
intermediate result of a calculation, off the stack. For example :

variable x

creates a storage location named x, which executes leaving the address of its storage
location at the top of the stack :

x . \ display address

We can then retrieve or store at this address :

variable x

3 x !

x @ . \ display: 3

Constants

A constant is a number that you would not want to change while a program is running.
The result of executing the word associated with a constant is the value of the data
remaining on the stack.

\ define VSPI pins

19 constant VSPI_MISO

23 constant VSPI_MOSI

18 constant VSPI_SCLK

Page 56

05 constant VSPI_CS

\ define SPI frequency port

4000000 constant SPI_FREQ

\ select SPI vocabulary

only FORTH SPI also

\ initialize the SPI port

: init.VSPI (--)

 VSPI_CS OUTPUT pinMode

 VSPI_SCLK VSPI_MISO VSPI_MOSI VSPI_CS SPI.begin

 SPI_FREQ SPI.setFrequency

 ;

Pseudo-constant values

A value defined with value is a hybrid type of variable and constant. We set and
initialize a value and it is invoked as we would a constant. We can also change a value like
we can change a variable.

decimal

13 value thirteen

thirteen . \ display: 13

47 to thirteen

thirteen . \ display: 47

The word to also works in word definitions, replacing the value following it with whatever
is currently at the top of the stack. You need to be careful that to is followed by a value
defined by value and not something else.

Basic tools for memory allocation

The words create and allot are the basic tools for reserving memory space and
attaching a label to it. For example, the following transcription shows a new dictionary
entry graphic-array :

create graphic-array (--- addr)

 %00000000 c,

 %00000010 c,

 %00000100 c,

 %00001000 c,

 %00010000 c,

 %00100000 c,

 %01000000 c,

 %10000000 c,

When executed, the word graphic-array stacks the address of the first entry.

Page 57

We can now access the memory allocated to graphic-array using the fetch and store
words explained earlier. To calculate the address of the third byte assigned to graphic-
array we can write graphic-array 2 +, remembering that the indices start at 0.

30 graphic-array 2 + c!

graphic-array 2 + c@ . \ display 30

Page 58

Text colors and display position on terminal

ANSI coding of terminals

If you are using terminal software to communicate with ESP32forth, there is a good
chance that this terminal emulates a VT type terminal or equivalent. Here, TeraTerm
configured to emulate a VT100 terminal:

These terminals have two interesting features :

• color the page background and the text to display

• position the display cursor

Both of these features are controlled by ESC (escape) sequences. This is how the words
bg and fg are defined in ESP32forth :

forth definitions ansi

: fg (n --) esc ." [38;5;" n. ." m" ;

: bg (n --) esc ." [48;5;" n. ." m" ;

: normal esc ." [0m" ;

: at-xy (x y --) esc ." [" 1+ n. ." ;" 1+ n. ." H" ;

: page esc ." [2J" esc ." [H" ;

The word normal overrides the coloring sequences defined by bg and fg.

The word page clears the terminal screen and positions the cursor at the upper left corner
of the screen.

Text coloring

Let's see how to color the text first :

Page 59

: testFG (--)

 page

 16 0 do

 16 0 do

 j 16 * i + fg

 ." X"

 loop

 cr

 loop

 normal

 ;

Running testFG gives this on display :

To test the background colors, we will proceed as follows :

: testBG (--)

 page

 16 0 do

 16 0 do

 j 16 * i + bg

 space space

 loop

 cr

 loop

 normal

 ;

Running testBG gives this on display :

Page 60

Display position

The terminal is the simplest solution to communicate with ESP32forth. With ANSI escape
sequences it is easy to improve the presentation of data.

09 constant red

11 constant yellow

14 constant cyan

15 constant whyte

: box { x0 y0 xn yn color -- }

 color bg

 yn y0 - 1+ \ determine height

 0 do

 x0 y0 i + at-xy

 xn x0 - spaces

 loop

 normal

 ;

: 3boxes (--)

 page

 2 4 20 6 cyan box

 8 6 28 8 red box

 14 8 36 10 yellow box

 0 0 at-xy

 ;

Page 61

Running 3boxes shows this :

You are now equipped to create simple and effective interfaces allowing interaction with
FORTH definitions compiled by ESP32forth.

Page 62

Local variables with ESP32Forth

Introduction

The FORTH language processes data primarily through the data stack. This very simple
mechanism offers unrivaled performance. Conversely, following the flow of data can
quickly become complex. Local variables offer an interesting alternative.

The fake stack comment

If you follow the different FORTH examples, you will have noticed the stack comments
framed by (and) . Example:

\ addition two unsigned values, leaves sum and carry on the stack

: um+ (u1 u2 -- sum carry)

 \ here the definition

 ;

Here, the comment (u1 u2 -- sum carry) has absolutely no action on the rest of the
FORTH code. This is pure commentary.

When preparing a complex definition, the solution is to use local variables framed by {
and } . Example :

: 2OVER { a b c d }

 a b c d a b

 ;

We define four local variables a b c and d.

The words { and } are similar to the words (and) but do not have the same effect at all.
Codes placed between { and } are local variables. The only constraint: do not use variable
names that could be FORTH words from the FORTH dictionary. We might as well have
written our example like this :

: 2OVER { varA varB varC varD }

 varA varB varC varD varA varB

 ;

Each variable will take the value of the data stack in the order of their deposit on the data
stack. here, 1 goes into varA, 2 into varB, etc.:

--> 1 2 3 4

 ok

1 2 3 4 --> 2over

 ok

1 2 3 4 1 2 -->

Page 63

Our fake stack comment can be completed like this :

: 2OVER { varA varB varC varD -- varA varB varC varD varA varB }

The characters following -- have no effect. The only point is to make our fake comment
look like a real stack comment.

Action on local variables

Local variables act exactly like pseudo-variables defined by value. Example :

: 3x+1 { var -- sum }

 var 3 * 1 +

 ;

A le même effet que ceci:

0 value var

: 3x+1 (var -- sum)

 to var

 var 3 * 1 +

 ;

In this example, var is defined explicitly by value.

We assign a value to a local variable with the word to or +to to increment the content of
a local variable. In this example, we add a local variable result initialized to zero in the
code of our word:

: a+bEXP2 { varA varB -- (a+b)EXP2 }

 0 { result }

 varA varA * to result

 varB varB * +to result

 varA varB * 2 * +to result

 result

 ;

Isn't it more readable than this?

: a+bEXP2 (varA varB -- result)

 2dup

 * 2 * >r

 dup *

 swap dup * +

 r> +

 ;

Here is a final example, the definition of the word um+ which adds two unsigned integers
and leaves the sum and the overflow value of this sum on the data stack:

\ add two unsigned integers, leaves sum and carry on the stack

: um+ { u1 u2 -- sum carry }

 0 { sum }

Page 64

 cell for

 aft

 u1 $100 /mod to u1

 u2 $100 /mod to u2

 +

 cell 1- i - 8 * lshift +to sum

 then

 next

 sum

 u1 u2 + abs

 ;

Here is a more complex example, rewriting DUMP using local variables:

\ local variables in DUMP:

\ START_ADDR \ first address for dump

\ END_ADDR \ last address for dump

\ 0START_ADDR \ first address for loop in dump

\ LINES \ number of lines for dump loop

\ myBASE \ current numerical base

internals

: dump (start len --)

 cr cr ." --addr--- "

 ." 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ------chars-----"

 2dup + { END_ADDR } \ store latest address to dump

 swap { START_ADDR } \ store START address to dump

 START_ADDR 16 / 16 * { 0START_ADDR } \ calc. addr for loop start

 16 / 1+ { LINES }

 base @ { myBASE } \ save current base

 hex

 \ outer loop

 LINES 0 do

 0START_ADDR i 16 * + \ calc start address for current line

 cr <# # # # # [char] - hold # # # # #> type

 space space \ and display address

 \ first inner loop, display bytes

 16 0 do

 \ calculate real address

 0START_ADDR j 16 * i + +

 ca@ <# # # #> type space \ display byte in format: NN

 loop

 space

 \ second inner loop, display chars

 16 0 do

 \ calculate real address

 0START_ADDR j 16 * i + +

 \ display char if code in interval 32-127

 ca@ dup 32 < over 127 > or

 if drop [char] . emit

Page 65

 else emit

 then

 loop

 loop

 myBASE base ! \ restore current base

 cr cr

 ;

forth

The use of local variables greatly simplifies data manipulation on stacks. The code is more
readable. Note that it is not necessary to pre-declare these local variables, it is enough to
designate them when using them, for example: base @ { myBASE }.

WARNING: if you use local variables in a definition, no longer use the words >r and r>,
otherwise you risk disrupting the management of local variables. Just look at the
decompilation of this version of DUMP to understand the reason for this warning:

: dump cr cr s" --addr--- " type

 s" 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ------chars-----" type

 2dup + >R SWAP >R -4 local@ 16 / 16 * >R 16 / 1+ >R base @ >R

 hex -8 local@ 0 (do) -20 local@ R@ 16 * + cr

 <# # # # # 45 hold # # # # #> type space space

 16 0 (do) -28 local@ j 16 * R@ + + CA@ <# # # #> type space 1 (+loop)

 0BRANCH rdrop rdrop space 16 0 (do) -28 local@ j 16 * R@ + + CA@ DUP 32 < OVER 127 > OR

 0BRANCH DROP 46 emit BRANCH emit 1 (+loop) 0BRANCH rdrop rdrop 1 (+loop)

 0BRANCH rdrop rdrop -4 local@ base ! cr cr rdrop rdrop rdrop rdrop rdrop ;

Page 66

Data structures for ESP32forth

Preamble

ESP32forth is a 32-bit version of the FORTH language. Those who have practiced FORTH
since its beginnings have programmed with 16-bit versions. This data size is determined
by the size of the elements deposited on the data stack. To find out the size in bytes of
the elements, you must execute the word cell. Running this word for ESP32forth :

cell . \ display 4

The value 4 means that the size of the elements placed on the data stack is 4 bytes, or
4x8 bits = 32 bits.

With a 16-bit FORTH version, cell will stack the value 2. Likewise, if you use a 64-bit
version, cell will stack the value 8.

Tables in FORTH

Let's start with fairly simple structures : tables. We will only discuss one- or two-
dimensional arrays.

One-dimensional 32-bit data array

This is the simplest type of table. To create a table of this type, we use the word create
followed by the name of the table to create :

create temperatures

 34 , 37 , 42 , 36 , 25 , 12 ,

temperatures \ push addr on stack

 0 cell * \ calculate offset 0

 + \ add offset to addr

 @ . \ display 34

temperatures \ push addr on stack

 1 cell * \ calculate offset 0

 + \ add offset to addr

 @ . \ display 37

We can factor the access code to the desired value by defining a word which will calculate
this address :

: temp@ (index -- value)

 cell * temperatures + @

 ;

0 temp@ . \ display 34

2 temp@ . \ display 42

Page 67

You will notice that for n values stored in this table, here 6 values, the access index must
always be in the interval [0..n-1].

Words for table definitions

Here's how to create a word definition of one-dimensional integer arrays :

: array (comp: -- | exec: index -- addr)

 create

 does>

 swap cell * +

 ;

array myTemps

 21 , 32 , 45 , 44 , 28 , 12 ,

0 myTemps @ . \ display 21

5 myTemps @ . \ display 12

In our example, we store 6 values between 0 and 255. It is easy to create a variant of
array to manage our data in a more compact way :

: arrayC (comp: -- | exec: index -- addr)

 create

 does>

 +

 ;

arrayC myCTemps

 21 c, 32 c, 45 c, 44 c, 28 c, 12 c,

0 myCTemps c@ . \ display 21

5 myCTemps c@ . \ display 12

With this variant, the same values are stored in four times less memory space.

Read and write in a table

It is entirely possible to create an empty array of n elements and write and read values in
this array :

arrayC myCTemps

 6 allot \ allocate 6 bytes

 0 myCTemps 6 0 fill \ fill this 6 bytes with value 0

32 0 myCTemps c! \ store 32 in myCTemps[0]

25 5 myCTemps c! \ store 25 in myCTemps[5]

0 myCTemps c@ . \ display 32

In our example, the array contains 6 elements. With ESP32forth, there is enough memory
space to process much larger arrays, with 1,000 or 10,000 elements for example. It's easy
to create multi-dimensional tables. Example of a two-dimensional array :

63 constant SCR_WIDTH

16 constant SCR_HEIGHT

create mySCREEN

 SCR_WIDTH SCR_HEIGHT * allot \ allocate 63 * 16 bytes

Page 68

 mySCREEN SCR_WIDTH SCR_HEIGHT * bl fill \ fill this memory with 'space'

Here, we define a two-dimensional table named mySCREEN which will be a virtual screen of
16 rows and 63 columns.

Simply reserve a memory space which is the product of the dimensions X and Y of the
table to use. Now let's see how to manage this two-dimensional array :

: xySCRaddr { x y -- addr }

 SCR_WIDTH y *

 x + mySCREEN +

 ;

: SCR@ (x y -- c)

 xySCRaddr c@

 ;

: SCR! (c x y --)

 xySCRaddr c!

 ;

char X 15 5 SCR! \ store char X at col 15 line 5

15 5 SCR@ emit \ display X

Practical example of managing a virtual screen

Before going further in our example of managing a virtual screen, let's see how to modify
the character set of the TERA TERM terminal and display it.

Launch TERA TERM terminal :

• in the menu bar, click on Setup

• select Font and Font...

• configure the font below :

Page 69

Here's how to display the table of available characters :

: tableChars (--)

 base @ >r hex

 128 32 do

 16 0 do

 j i + dup . space emit space space

 loop

 cr

 16 +loop

 256 160 do

 16 0 do

 j i + dup . space emit space space

 loop

 cr

 16 +loop

 cr

 r> base !

 ;

tableChars

Here is the result of running tableChars :

Page 70

These characters are those from the MS-DOS ASCII set. Some of these characters are
semi-graphic. Here is a very simple insertion of one of these characters into our virtual
screen :

$db dup 5 2 SCR! 6 2 SCR!

$b2 dup 7 3 SCR! 8 3 SCR!

$b1 dup 9 4 SCR! 10 4 SCR!

Now let's see how to display the contents of our virtual screen. If we consider each line of
the virtual screen as an alphanumeric string, we just need to define this word to display
one of the lines of our virtual screen :

: dispLine { numLine -- }

 SCR_WIDTH numLine *

 mySCREEN + SCR_WIDTH type

 ;

Along the way, we will create a definition allowing the same character to be displayed n
times :

: nEmit (c n --)

 for

 aft dup emit then

 next

 drop

 ;

And now, we define the word allowing us to display the content of our virtual screen. To
clearly see the content of this virtual screen, we frame it with special characters :

: dispScreen

 0 0 at-xy

 \ display upper border

 $da emit $c4 SCR_WIDTH nEmit $bf emit cr

 \ display content virtual screen

 SCR_HEIGHT 0 do

 $b3 emit i dispLine $b3 emit cr

 loop

 \ display bottom border

 $c0 emit $c4 SCR_WIDTH nEmit $d9 emit cr

 ;

Running our dispScreen word displays this :

Page 71

In our virtual screen example, we show that managing a two-dimensional array has a
concrete application. Our virtual screen is accessible for writing and reading. Here we
display our virtual screen in the terminal window. This display is far from efficient.

Management of complex structures

ESP32forth has the structures vocabulary. The content of this vocabulary makes it
possible to define complex data structures.

Here is simple example of structure :

structures

struct YMDHMS

 ptr field >year

 ptr field >month

 ptr field >day

 ptr field >hour

 ptr field >min

 ptr field >sec

Here, we define the YMDHMS structure. This structure manages the >year >month >day
>hour >min and >sec pointers.

The sole purpose of the YMDHMS word is to initialize and group the pointers in the complex
structure. Here is how these pointers are used :

create DateTime

 YMDHMS allot

2022 DateTime >year !

 03 DateTime >month !

 21 DateTime >day !

 22 DateTime >hour !

 36 DateTime >min !

 15 DateTime >sec !

Page 72

: .date (date --) \ date is address of structure

 >r

 ." YEAR: " r@ >year @ . cr

 ." MONTH: " r@ >month @ . cr

 ." DAY: " r@ >day @ . cr

 ." HH: " r@ >hour @ . cr

 ." MM: " r@ >min @ . cr

 ." SS: " r@ >sec @ . cr

 r> drop

 ;

DateTime .date

We defined word DateTime as simple table of 6 consecutive cells each 32 bits. Access to each
cell is with specific pointer. We can redefine our structure YMDHMS with i8 pointers to bytes.

structures

struct cYMDHMS

 ptr field >year

 i8 field >month

 i8 field >day

 i8 field >hour

 i8 field >min

 i8 field >sec

create cDateTime

 cYMDHMS allot

2022 cDateTime >year !

 03 cDateTime >month c!

 21 cDateTime >day c!

 22 cDateTime >hour c!

 36 cDateTime >min c!

 15 cDateTime >sec c!

: .cDate (date --)

 >r

 ." YEAR: " r@ >year @ . cr

 ." MONTH: " r@ >month c@ . cr

 ." DAY: " r@ >day c@ . cr

 ." HH: " r@ >hour c@ . cr

 ." MM: " r@ >min c@ . cr

 ." SS: " r@ >sec c@ . cr

 r> drop

 ;

cDateTime .cDate \ displays:

\ YEAR: 2022

\ MONTH: 3

\ DAY: 21

Page 73

\ HH: 22

\ MM: 36

\ SS: 15

In this cYMDHMS structure, we kept the year in 32-bit format and reduced all other values
to 8-bit integers. We see, in the .cDate code, that the use of pointers allows easy access
to each element of our complex structure....

Definition of sprites

We previously defined a virtual screen as a two-dimensional array. The dimensions of this
array are defined by two constants. Reminder of the definition of this virtual screen :

63 constant SCR_WIDTH

16 constant SCR_HEIGHT

create mySCREEN

 SCR_WIDTH SCR_HEIGHT * allot

 mySCREEN SCR_WIDTH SCR_HEIGHT * bl fill

With this programming method, the disadvantage is that the dimensions are defined in
constants, therefore outside the table. It would be more interesting to embed the
dimensions of the table in the table. To do this, we will define a structure adapted to this
case :

structures

struct cARRAY

 i8 field >width

 i8 field >height

 i8 field >content

create myVscreen \ define a screen 8x32 bytes

 32 c, \ compile width

 08 c, \ compile height

 myVscreen >width c@

 myVscreen >height c@ * allot

To define a software sprite, we will very simply share this definition :

: sprite: (width height --)

 create

 swap c, c, \ compile width et height

 does>

 ;

2 1 sprite: blackChars

 $db c, $db c,

2 1 sprite: greyChars

 $b2 c, $b2 c,

blackChars >content 2 type \ display content of sprite blackChars

Here's how to define a 5 x 7 byte sprite :

Page 74

5 7 sprite: char3

 $20 c, $db c, $db c, $db c, $20 c,

 $db c, $20 c, $20 c, $20 c, $db c,

 $20 c, $20 c, $20 c, $20 c, $db c,

 $20 c, $db c, $db c, $db c, $20 c,

 $20 c, $20 c, $20 c, $20 c, $db c,

 $db c, $20 c, $20 c, $20 c, $db c,

 $20 c, $db c, $db c, $db c, $20 c,

To display the sprite, from an x y position in the terminal window, a simple loop is
enough :

: .sprite { xpos ypos sprAddr -- }

 sprAddr >height c@ 0 do

 xpos ypos at-xy

 sprAddr >width c@ i * \ calculate offset in sprite datas

 sprAddr >content + \ calculate real addr for line n in sprite
datas

 sprAddr >width c@ type \ display line

 1 +to ypos \ increment y position

 loop

 ;

0 constant blackColor

1 constant redColor

4 constant blueColor

10 02 char3 .sprite

redColor fg

16 02 char3 .sprite

blueColor fg

22 02 char3 .sprite

blackColor fg

cr cr

Result of displaying our sprite :

Page 75

I hope the content of this chapter has given you some interesting ideas that you would
like to share...

Page 76

Real numbers with ESP32forth
If we test the operation 1 3 / in FORTH language, the result will be 0.

It's not surprising. Basically, ESP32forth only uses 32-bit integers via the data stack.
Integers offer certain advantages:

 speed of processing;

 result of calculations without risk of drift in the event of iterations;

 suitable for almost all situations.

Even in trigonometric calculations, we can use a table of integers. Simply create a table
with 90 values, where each value corresponds to the sine of an angle, multiplied by 1000.

But integers also have limits:

 impossible results for simple division calculations, like our 1/3 example;

 requires complex manipulations to apply physics formulas.

Since version 7.0.6.5, ESP32forth includes operators dealing with real numbers.

Real numbers are also called floating point numbers.

The real ones with ESP32forth
In order to distinguish real numbers, they must end with the letter "e":

3 \ push 3 on the normal stack
3e \ push 3 on the real stack
5.21e f. \ display 5.210000

It's the word f. which allows you to display a real number located at the top of the reals
stack.

Real number accuracy with ESP32forth
The word set-precision allows you to indicate the number of decimal places to display
after the decimal point. Let's see this with the constant pi :

pi f. \ display 3.141592
4 set-precision
pi f. \ display 3.1415

The limit precision for processing real numbers with ESP32forth is six decimal places :

Page 77

12 set-precision
1.987654321e f. \ display 1.987654668777

If we reduce the display precision of real numbers below 6, the calculations will still be
carried out with a precision to 6 decimal places.

Real constants and variables
A real constant is defined with the word fconstant :

0.693147e fconstant ln2 \ natural logarithm of 2

A real variable is defined with the word fvariable :

fvariable intensity
170e 12e F/ intensity SF! \ I=P/U --- P=170w U=12V
intensity SF@ f. \ display 14.166669

ATTENTION: all real numbers pass through the real number stack . In the case of a real
variable, only the address pointing to the real value passes through the data stack.

The word SF! stores a real value at the address or variable pointed to by its memory
address. Executing a real variable places the memory address on the classic data stack.

The word SF@ stacks the real value pointed to by its memory address.

Arithmetic operators on real numbers
ESP32Forth has four arithmetic operators F+ F- F* F/ :

1.23e 4.56e F+ f. \ display 5.790000 1.23-4.56
1.23e 4.56e F- f. \ display -3.330000 1.23-4.56
1.23e 4.56e F* f. \ display 5.608800 1.23*4.56
1.23e 4.56e F/ f. \ display 0.269736 1.23/4.56

ESP32forth also has these words:

 1/F calculates the inverse of a real number;

 fsqrt calculates the square root of a real number.

5e 1/F f. \ display 0.200000 1/5
5e fsqrt f. \ display 2.236068 sqrt(5)

Mathematical operators on real numbers

ESP32forth has several mathematical operators:

 F** raises a real r_val to the power r_exp

 FATAN2 calculates the angle in radian from the tangent.

Page 78

 FCOS (r1 -- r2) Calculates the cosine of an angle expressed in radians.

 FEXP (ln-r -- r) calculates the real corresponding to e EXP r

 FLN (r -- ln-r) calculates the natural logarithm of a real number.

 FSIN (r1 -- r2) calculates the sine of an angle expressed in radians.

 FSINCOS (r1 -- rcos rsin) calculates the cosine and sine of an angle expressed in
radians.

Some examples :

 2e 3e f** f. \ display 8.000000
 2e 4e f** f. \ display 16.000000
 10e 1.5e f** f. \ display 31.622776

4.605170e FEXP F. \ display 100.000018

pi 4e f/
FSINCOS f. f. \ display 0.707106 0.707106
pi 2e f/
FSINCOS f. f. \ display 0.000000 1.000000

Logical operators on real numbers

ESP32forth also allows you to perform logic tests on real data:

 F0< (r -- fl) tests if a real number is less than zero.

 F0= (r -- fl) indicates true if the real is zero.

 f< (r1 r2 -- fl) fl is true if r1 < r2.

 f<= (r1 r2 -- fl) fl is true if r1 <= r2.

 f<> (r1 r2 -- fl) fl is true if r1 <> r2.

 f= (r1 r2 -- fl) fl is true if r1 = r2.

 f> (r1 r2 -- fl) fl is true if r1 > r2.

 f>= (r1 r2 -- fl) fl is true if r1 >= r2.

Integer ↔ real transformations

ESP32forth has two words to transform integers into reals and vice versa:

 F>S (r -- n) converts a real to an integer. Leave the integer part on the data stack
if the real has decimal parts.

 S>F (n -- r: r) converts an integer to a real number and transfers this real number
to the reals stack.

Example :

Page 79

35 S>F
F. \ display 35.000000

3.5e F>S . \ display 3

Page 80

Displaying numbers and character strings

Change of numerical base

FORTH does not process just any numbers. The ones you used when trying the previous
examples are single-precision signed integers. The definition domain for 32-bit integers is
-2147483648 to 2147483647. Example :

2147483647 . \ displays 2147483647
2147483647 1+ . \ displays -2147483648
-1 u. \ displays 4294967295

These numbers can be processed in any number base, with all number bases between 2
and 36 being valid :

255 HEX. DECIMAL \displays FF

You can choose an even larger numerical base, but the available symbols will fall outside
the alpha-numeric set [0..9,A..Z] and risk becoming inconsistent.

The current numerical base is controlled by a variable named BASE and whose content
can be modified. So, to switch to binary, simply store the value 2 in BASE . Example:

2 BASE !

and type DECIMAL to return to the decimal numeric base.

ESP32forth has two pre-defined words allowing you to select different numerical bases:

 DECIMAL to select the decimal numeric base. This is the numerical base taken by
default when starting ESP32forth;

 HEX to select the hexadecimal numeric base.

Upon selection of one of these numerical bases, the literal numbers will be interpreted,
displayed or processed in this base. Any number previously entered in a number base
other than the current number base is automatically converted to the current number
base. Example :

DECIMAL \ base to decimal
255 \ stacks 255
HEX \ selects hexadecimal base
1+ \ increments 255 becomes 256
. \ displays 100

One can define one's own numerical base by defining the appropriate word or by storing
this base in BASE . Example :

Page 81

: BINARY (---) \ selects the binary number base
 2 BASE ! ;
DECIMAL 255 BINARY . \ displays 11111111

The contents of BASE can be stacked like the contents of any other variable :

VARIABLE RANGE_BASE \ RANGE-BASE variable definition
BASE @ RANGE_BASE ! \ storage BASE contents in RANGE-BASE
HEX FF 10 + . \ displays 10F
RANGE_BASE @ BASE ! \ restores BASE with contents of RANGE-BASE

In a definition : , the contents of BASE can pass through the return stack :

: OPERATION (---)
 BASE @ >R \ stores BASE on back stack

 HEX FF 10 + . \ operation of the previous example

 R> BASE ! ; \ restores initial BASE value

WARNING : the words >R and R> cannot be used in interpreted mode. You can only use
these words in a definition that will be compiled.

Definition of new display formats
Forth has primitives allowing you to adapt the display of a number to any format. With
ESP32forth, these primitives deal with integers numbers :

 <# begins a format definition sequence;

 # inserts a digit into a format definition sequence;

 #S is equivalent to a succession of # ;

 HOLD inserts a character into a format definition;

 #> completes a format definition and leaves on the stack the address and length of
the string containing the number to display.

These words can only be used within a definition. Example, either to display a number
expressing an amount denominated in euros with the comma as a decimal separator :

: .EUROS (n ---)

 <# # # [char] , hold #S #>

 type space ." EUR" ;

1245 .euros

Execution examples:

35 .EUROS \ displays 0,35 EUR

3575 .EUROS \ displays 35,75 EUR

1015 3575 + .EUROS \ displays 45,90 EUR

Page 82

In the EUROS definition, the word <# begins the display format definition sequence. The
two words # place the ones and tens digits in the character string. The word HOLD places
the character , (comma) following the two digits on the right, the word #S completes the
display format with the non-zero digits following , . The word #> closes the format
definition and places on the stack the address and the length of the string containing the
digits of the number to display. The word TYPE displays this character string.

At runtime, a display format sequence deals exclusively with signed or unsigned 32-bit
integers. The concatenation of the different elements of the string is done from right to
left, i.e. starting with the least significant digits.

The processing of a number by a display format sequence is executed based on the
current numeric base. The numerical base can be modified between two digits.

Here is a more complex example demonstrating the compactness of FORTH. This involves
writing a program converting any number of seconds into HH:MM:SS format:

 :00 (---)

 DECIMAL # \ insert digit unit in decimal

 6 BASE ! \ base 6 selection

 # \ insert digit ten

 [char] : HOLD \ insertion character :

 DECIMAL ; \ return decimal base

: HMS (n ---) \ displays number seconds format HH:MM:SS

 <# :00 :00 #S #> TYPE SPACE ;

Execution examples :

59 HMS \ displays 0:00:59

60 HMS \ displays 0:01:00

4500 HMS \ displays 1:15:00

Explanation: The system for displaying seconds and minutes is called the sexagesimal
system. Units are expressed in decimal numerical base, tens are expressed in base six.
The word :00 manages the conversion of units and tens in these two bases for formatting
the numbers corresponding to seconds and minutes. For times, the numbers are all
decimal.

Another example, to define a program converting a single precision decimal integer into
binary and displaying it in the format bbbb bbbb bbbb bbbb:

: FOUR-DIGITS (---)

 # # # # 32 HOLD ;

: AFB (n ---) \ format 4 digits and a space

 BASE @ >R \ Current database backup

 2 BASE ! \ Binary digital base selection

Page 83

 <#

 4 0 DO \ Format Loop

 FOUR-DIGITS

 LOOP

 #> TYPE SPACE \ Binary display

 R> BASE ! ; \ Initial digital base restoration

Execution example :

DECIMAL 12 AFB \ displays 0000 0000 0000 0110

HEX 3FC5 AFB \ displays 0011 1111 1100 0101

Another example is to create a telephone diary where one or more telephone numbers are
associated with a surname. We define a word by surname :

: .## (---)

 # # [char] . HOLD ;

: .TEL (d ---)

 CR <# .## .## .## .## # # #> TYPE CR ;

: WACHOWSKI (---)

 0618051254 .TEL ;

WACHOWSKI \ displays: 06.18.05.12.54

This calendar, which can be compiled from a source file, is easily editable, and although
the names are not classified, the search is extremely fast.

Displaying characters and character strings
A character is displayed using the word EMIT :

65 EMIT \ displays A

The displayable characters are in the range 32..255. Codes between 0 and 31 will also be
displayed, subject to certain characters being executed as control codes. Here is a
definition showing the entire character set of the ASCII table:

variable #out

: #out+! (n --)

 #out +! \ increment #out

 ;

: (.) (n -- a l)

 DUP ABS <# #S ROT SIGN #>

;

: .R (n l --)

 >R (.) R> OVER - SPACES TYPE

;

: ASCII-SET (---)

 cr 0 #out !

 128 32

 DO

Page 84

 I 3 .R SPACE \ displays character code

 4 #out+!

 I EMIT 2 SPACES \ displays character

 3 #out+!

 #out @ 77 =

 IF

 CR 0 #out !

 THEN

 LOOP ;

Running ASCII-SET displays the ASCII codes and characters whose code is between 32
and 127. To display the equivalent table with the ASCII codes in hexadecimal, type HEX
ASCII-SET :

hex ASCII-SET

 20 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ' 28 (29) 2A *

 2B + 2C , 2D - 2E . 2F / 30 0 31 1 32 2 33 3 34 4 35 5

 36 6 37 7 38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ? 40 @

 41 A 42 B 43 C 44 D 45 E 46 F 47 G 48 H 49 I 4A J 4B K

 4C L 4D M 4E N 4F O 50 P 51 Q 52 R 53 S 54 T 55 U 56 V

 57 W 58 X 59 Y 5A Z 5B [5C \ 5D] 5E ^ 5F _ 60 ` 61 a

 62 b 63 c 64 d 65 e 66 f 67 g 68 h 69 i 6A j 6B k 6C l

 6D m 6E n 6F o 70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

 78 x 79 y 7A z 7B { 7C | 7D } 7E ~ 7F ok

Character strings are displayed in various ways. The first, usable in compilation only,
displays a character string delimited by the character " (quote mark):

: TITLE ." GENERAL MENU";
 TITLE \ displays GENERAL MENU

The string is separated from the word ." by at least one space character.

A character string can also be compiled by the word s" and delimited by the character "
(quotation mark):

: LINE1 (--- adr len)
 S" E..Data logging" ;

Executing LINE1 places the address and length of the string compiled in the definition on
the data stack. The display is carried out by the word TYPE:

LINE1 TYPE \displays E..Data logging

At the end of displaying a character string, the line break must be triggered if desired:

CR TITLE CR CR LINE1 CR TYPE
\ displays:
\ GENERAL MENU
\
\ E..Data logging

Page 85

One or more spaces can be added at the start or end of the display of an alphanumeric
string :

SPACE \ displays a space character
10 SPACES \ displays 10 space characters

String variables
Alpha-numeric text variables do not exist natively in ESP32forth. Here is the first attempt
to define the word string :

\ define a strvar

: string (comp: n --- names_strvar | exec: --- addr len)

 create

 dup

 c, \ n is maxlength

 0 c, \ 0 is real length

 allot

 does>

 2 +

 dup 1 - c@

 ;

A character string variable is defined like this:

16 string strState

Here is how the memory space reserved for this text variable is organized:

Text variable management word code

Here is the complete source code for managing text variables:

DEFINED? --str [if] forget --str [then]

create --str

\ compare two strings

: $= (addr1 len1 addr2 len2 --- fl)

 str=

 ;

Page 86

\ define a strvar

: string (n --- names_strvar)

 create

 dup

 , \ n is maxlength

 0 , \ 0 is real length

 allot

 does>

 cell+ cell+

 dup cell - @

 ;

\ get maxlength of a string

: maxlen$ (strvar --- strvar maxlen)

 over cell - cell - @

 ;

\ store str into strvar

: $! (str strvar ---)

 maxlen$ \ get maxlength of strvar

 nip rot min \ keep min length

 2dup swap cell - ! \ store real length

 cmove \ copy string

 ;

\ Example:

\ : s1

\ s" this is constant string" ;

\ 200 string test

\ s1 test $!

\ set length of a string to zero

: 0$! (addr len --)

 drop 0 swap cell - !

 ;

\ extract n chars right from string

: right$ (str1 n --- str2)

 0 max over min >r + r@ - r>

 ;

\ extract n chars left frop string

: left$ (str1 n --- str2)

 0 max min

 ;

\ extract n chars from pos in string

: mid$ (str1 pos len --- str2)

Page 87

 >r over swap - right$ r> left$

 ;

\ append char c to string

: c+$! (c str1 --)

 over >r

 + c!

 r> cell - dup @ 1+ swap !

 ;

\ work only with strings. Don't use with other arrays

: input$ (addr len --)

 over swap maxlen$ nip accept

 swap cell - !

 ;

Creating an alphanumeric character string is very simple :

64 string myNewString

Here we create an alphanumeric variable myNewString which can contain up to 64
characters.

To display the contents of an alphanumeric variable, simply use type . Example :

s" This is my first example.." myNewString $!

myNewString type \ display: This is my first example..

If we try to save a character string longer than the maximum size of our alphanumeric
variable, the string will be truncated:

s" This is a very long string, with more than 64 characters. It can't store
complete"

myNewString $!

myNewString type

\ displays: This is a very long string, with more than 64 characters. It
can

Adding character to an alphanumeric variable
Some devices, the LoRa transmitter for example, require processing command lines
containing the non-alphanumeric characters The word c+$! allows this code insertion:

32 string AT_BAND

s" AT+BAND=868500000" AT_BAND $! \ set frequency at 865.5 Mhz

$0a AT_BAND c+$!

$0d AT_BAND c+$! \ add CR LF code at end of command

The memory dump of the contents of our alphanumeric variable AT_BAND confirms the
presence of the two control characters at the end of the string:

Page 88

--> AT_BAND dump

--addr--- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ------chars-----

3FFF-8620 8C 84 FF 3F 20 00 00 00 13 00 00 00 41 54 2B 42 ...?AT+B

3FFF-8630 41 4E 44 3D 38 36 38 35 30 30 30 30 30 0A 0D BD AND=868500000...

OK

Here is a clever way to create an alphanumeric variable allowing you to transmit a
carriage return, a CR+LF compatible with the end of commands for the LoRa transmitter:

2 string $crlf

$0d $crlf c+$!

$0a $crlf c+$!

: crlf (--) \ same action as cr, but adapted for LoRa

 $crlf type

 ;

Page 89

Vocabularies with ESP32forth
In FORTH, the notion of procedure and function does not exist. FORTH instructions are
called WORDS. Like a traditional language, FORTH organizes the words that compose it
into VOCABULARIES, a set of words with a common trait.

Programming in FORTH consists of enriching an existing vocabulary, or defining a new
one, relating to the application being developed.

List of vocabularies
A vocabulary is an ordered list of words, searched from most recently created to least
recently created. The search order is a stack of vocabularies. Running a vocabulary name
replaces the top of the search order stack with that vocabulary.

To see the list of different vocabularies available in ESP32forth, we will use the word
voclist :

--> internals voclist \ displays
registers
ansi
editor
streams
tasks
rtos
sockets
Serial
ledc
SPIFFS
SD_MMC
SD
Wireless
Wire
ESP
structures
internalized
internals
FORTH

This list is not limited. Additional vocabularies may appear if we compile certain
extensions.

The main vocabulary is called FORTH. All other vocabularies are attached to the FORTH
vocabulary.

Page 90

List of vocabulary contents
To see the content of a vocabulary, we use the word vlist having previously selected
the appropriate vocabulary :

vlist sockets

Select sockets vocabulary and displays its contents :

--> sockets vlist\displays:
ip. ip# ->h_addr ->addr! ->addr@ ->port! ->port@ sockaddr l, s, bs, SO_REUSEADDR
SOL_SOCKET sizeof(sockaddr_in) AF_INET SOCK_RAW SOCK_DGRAM SOCK_STREAM
socket setsockopt bind listen connect sockaccept select poll send sendto
sendmsg recv recvfrom recvmsg gethostbyname errno sockets-builtins

Selecting a vocabulary gives access to the words defined in this vocabulary.

For example, the word voclist is not accessible without first invoking the vocabulary
internals.

The same word can be defined in two different vocabularies and have two different
actions : the word l is defined in both asm and editor vocabularies.

This is even more obvious with the word server , defined in the httpd , telnetd and
web-interface vocabularies.

Using vocabulary words
To compile a word defined in a vocabulary other than FORTH, there are two solutions. The
first solution is to simply call this vocabulary before defining the word which will use words
from this vocabulary.

Here, we define a word serial2-type which uses the word Serial2.write defined in
the serial vocabulary :

serial \ Selection vocabulary Serial
: serial2-type (an --)
Serial2.write drop
;

The second solution allows you to integrate a single word from a specific vocabulary :

: serial2-type (an --)
[serial] Serial2.write [FORTH] \ compile word from vocabulary serial
drop
;

The selection of a vocabulary can be carried out implicitly from another word in the
FORTH vocabulary.

Page 91

Chaining of vocabularies
The order in which a word is searched in a vocabulary can be very important. In the case
of words with the same name, we remove any ambiguity by controlling the search order in
the different vocabularies that interest us.

Before creating a chain of vocabularies, we restrict the search order with the word only :

asm xtensa
order\display: xtensa >> asm >> FORTH

only
order\display: FORTH

We then duplicate the chaining of vocabularies with the word also :

only
order\display: FORTH

asm also
order\display: asm >> FORTH

xtensa
order\display: xtensa >> asm >> FORTH

Here is a compact chaining sequence :

only asm also xtensa

The last vocabulary thus chained will be the first explored when we execute or compile a
new word.

only
order\display: FORTH
also ledc also serial also SPIFFS
order \ displays: SPIFFS >> FORTH
\ Serial >> FORTH
\ ledc >> FORTH
\ FORTH

The search order, here, will start with the SPIFFS vocabulary, then Serial , then ledc
and finally the FORTH vocabulary :

 if the searched word is not found, there is a compilation error ;

 if the word is found in a vocabulary, it is this word that will be compiled, even if it is
defined in the following vocabulary.

Page 92

Delayed action words
Deferred action words are defined by the definition word defer. To understand the
mechanisms and the interest in exploiting this type of word, let's look in more detail at the
functioning of the internal interpreter of the FORTH language.

Any definition compiled by : (colon) contains a sequence of coded addresses
corresponding to the code fields of the words previously compiled. At the heart of the
FORTH system, the word EXECUTE accepts as parameters these code field addresses,
addresses which we abbreviate by cfa for Code Field Address. Every FORTH word has a
cfa and this address is used by the internal FORTH interpreter :

' <word>

\ drops the cfa of <word> onto the data stack

Example:

' WORDS
\ stacks the WORDS cfa.

From this cfa , known as the only literal value, the execution of the word can be carried
out with EXECUTE:

' WORDS EXECUTE
\ executes WORDS

Of course, it would have been easier to type WORDS directly . From the moment a cfa is
available as the only literal value, it can be manipulated and notably stored in a variable :

variable vector

' WORDS vector !

vector @ .
\ displays cfa of WORDS stored in vector variable

You can run WORDS indirectly from the contents of vector:

vector @ EXECUTE

This launches the execution of the word whose cfa was stored in the vector variable
then put back on the stack before use by EXECUTE.

This is a similar mechanism that is exploited by the execution part of the defer definition
word. To simplify, defer creates a header in the dictionary, like a variable or
constant, but instead of simply dropping an address or value on the stack, it starts
execution of the word whose cfa was stored in the parametric area of the word defined
by defer .

Definition and usage of words with defer
The initialization of a word defined by defer is carried out by is :

Page 93

defer vector

' words is vector

Executing vector causes the word whose cfa was previously assigned to be executed:

vector \ exécute words

A word created by defer is used to execute another word without explicitly calling on
that word. The main interest of this type of word lies above all in the possibility of
modifying the word to be executed:

' page is vector

vector now executes page and no longer words.

We essentially use the words defined by defer in two situations:

 definition of a forward reference;

 definition of a word depending on the operating context.

In the first case, the definition of a before reference makes it possible to overcome the
constraints of the sacrosanct precedence of definitions.

In the second case, the definition of a word depending on the operating context makes it
possible to resolve most of the interfacing problems with an evolving software
environment, to maintain the portability of applications, to adapt the behavior of a
program to situations controlled by various parameters without harming software
performance.

Setting a Forward Reference
Unlike other compilers, FORTH does not allow a word to be compiled into a definition
before it is defined. This is the principle of precedence of definitions:

: word1 (---) word2 ;

: word2 (---) ;

This generates an error when compiling word1 , because word2 is not yet defined. Here's
how to get around this constraint with defer :

defer word2

: word1 (---) word2 ;

: (word2) (---) ;

' (word2) is word2

This time word2 compiled without errors. It is not necessary to assign a cfa to the
vectorized execution word word2 . It is only after the definition of (word2) that the
parameter area of word2 is updated. After assignment of the vectorized execution word
word2 , word1 will be able to execute the content of its definition without error. The
exploitation of words created by defer in this situation must remain exceptional.

Page 94

Dependence on the operating context

ESP32forth natively uses a connection via serial port 1 as input and output stream.

In the ESP32forth source code, we find these lines:

defer type
defer key
defer key?

To pass through the serial port, ESP32forth initializes the word type like this:

' default-type is type

type flow will be redirected as follows:

: server (port --)

 server

 ['] serve-key is key

 ['] serve-type is type

 webserver-task start-task

;

type redirection if we use a TELNET flow:

: connection (n --)

 dup 0< if drop exit then to clientfd

 0 echo !

 ['] telnet-key is key

 ['] telnet-type is type quit ;

And if we wanted to redirect the text display to an OLED display, we would just have to
act on type in the same way. In the chapter Setting up the REYAX RYLR890 LoRa
transmitter , we exploit this type property as follows:

serial \ Select Serial vocabulary

: serial2-type (a n --)

 Serial2.write drop ;

: typeToLoRa (--)

 0 echo ! \ disable display echo from terminal

 ['] serial2-type is type

 ;

: typeToTerm (--)

 ['] default-type is type

 -1 echo ! \ enable display echo from terminal

 ;

By doing this, it becomes very easy to transmit a text stream to serial port 2:

: optionChoice

 ." choice option:" ;

optionChoice \ display choice options: on terminal

typeToLoRa

optionChoice \ display choice options: thru serial2

typeToTerm \ restaure normal display

Page 95

In this specific case, we define lots of words allowing you to control a LoRa transmitter
using ordinary words like emit, type, etc,,. If we do not activate transmission to serial
port 2, therefore to the LoRa transmitter, the words that communicate with this
transmitter can be easily developed:

\ Set the ADDRESS of LoRa transmitter:

\ s" <adress>" value in interval [0..65535][?] (default 0)

: ATaddress (addr len --)

 ." AT+ADDRESS="

 type crlf

 ;

If we execute ATaddress , the text stream will be displayed on the terminal. If you
followed correctly, you know which word to execute to redirect the flow from ATaddress
to serial port 2.

In summary, thanks to deferred execution words, we can act on the action of FORTH
words already defined.

A practical case

You have an application to create, with displays in two languages. Here is a clever way by
exploiting a word defined by defer to generate text in French or English. To begin, we will
simply create a table of days in English:

:noname s" Saterday" ;

:noname s" Friday" ;

:noname s" Thursday" ;

:noname s" Wednesday" ;

:noname s" Tuesday" ;

:noname s" Monday" ;

:noname s" Sunday" ;

create ENdayNames (--- addr)

, , , , , , ,

Then we create a similar table for the days in French:

:noname s" Samedi" ;

:noname s" Vendredi" ;

:noname s" Jeudi" ;

:noname s" Mercredi" ;

:noname s" Mardi" ;

:noname s" Lundi" ;

:noname s" Dimanche" ;

create FRdayNames (-- addr)
, , , , , , ,

Finally we create our deferred action word dayNames and how to initialize it:

defer dayNames

Page 96

: in-ENGLISH

 ['] ENdayNames is dayNames ;

: in-FRENCH

 ['] FRdayNames is dayNames ;

Here are now the words to manage these two tables:

: _getString { array length -- addr len }

 array

 swap cell *

 + @ execute

 length ?dup if

 min

 then

 ;

10 value dayLength

: getDay (n -- addr len) \ n interval [0..6]

 dayNames dayLength _getString

 ;

Here's what running getDay does :

: .dayList { size -- }

 size to dayLength

 7 0 do

 i getDay type space

 loop

 ;

in-ENGLISH 3 .dayList cr \ display : Sun Mon Tue Wed Thu Fri Sat

in-FRENCH 1 .dayList cr \ display : D L M M J V S

In the second line, we only display the first letter of each day of the week.

In this example, we leverage defer to simplify programming. In web development, we
would use templates to manage multilingual sites. In FORTH, we simply move a vector in
a delayed action word. Here we only manage two languages. This mechanism can easily
be extended to other languages, because we have separated the management of text
messages from the purely application part.

Page 97

Word Creation Words
FORTH is more than a programming language. It's a meta-language. A meta-language is a
language used to describe, specify or manipulate other languages.

With ESP32forth, we can define the syntax and semantics of programming words beyond
the formal framework of basic definitions.

We have already seen the words defined by constant , variable , value . These
words are used to manage digital data.

In the Data Structures for ESP32forth chapter, we also used the word create. This word
creates a header allowing access to a data area stored in memory. Example :

create temperatures
34, 37, 42, 36, 25, 12,

Here, each value is stored in the parameters area of the word temperatures with the
word ,.

With ESP32forth, we will see how to customize the execution of words defined by create.

Using does>

However, there is a combination of "CREATE" and "DOES>" keywords, which are often used
together to create custom words (vocabulary words) with specific behaviors.

Here's how it generally works in Forth:

 CREATE : this keyword is used to create a new data space in the ESP32Forth
dictionary. It takes one argument, which is the name you give your new word;

 DOES> : this keyword is used to define the behavior of the word you just created
with CREATE . It is followed by a block of code that specifies what the word should
do when encountered during program execution.

Together it looks something like this:

forth
CREATE my-new-word
\ code to execute when encountering my-new-word
 DOES>
;

When the word my-new-word is encountered in the FORTH program, the code specified
in the does>... ; will be executed.

\ define a register, similar as constant
: defREG:

 create (addr1 -- <name>)

 ,

Page 98

 does> (-- regAddr)

 @

 ;

Here, we define the definition word defREG: which has exactly the same action as
constant . But why create a word that recreates the action of a word that already exists?

$3FF44004 constant GPIO_OUT_REG

or

$3FF44004 defREG: GPIO_OUT_REG

are similar. However, by creating our registers with defREG: we have the following
advantages:

 a more readable ESP32forth source code. We easily detect all the constants naming
an ESP32 register;

 we leave ourselves the possibility of modifying the does> part of defREG:
without then having to rewrite the lines of code which would not use defREG:

Here is a classic case, processing a data table:

\ definition word for one dimension arrays
:array (comp: -- <name> | exec: index <name> -- addr)
 create

 does>

 swap cell * +

 ;

array temperatures

 21 , 32 , 45 , 44 , 28 , 12 ,

0 temperatures @ . \ display 21

5 temperatures @ . \ display 12

The execution of temperatures must be preceded by the position of the value to extract
in this table. Here we only get the address containing the value to extract.

Color management example

In this first example, we define the word color: which will retrieve the color to select
and store it in a variable:

0 value currentCOLOR

\ define word as COLOR constant
: color: (n -- <name>)

 create

 ,

 does>

 @ to currentCOLOR

 ;

$00 color: setBLACK

Page 99

$ff color: setWHITE

Running the word setBLACK or setWHITE greatly simplifies the ESP32forth code. Without
this mechanism, one of these lines would have had to be repeated regularly :

$00 currentCOLOR !

Or

$00 constant BLACK
BLACK currentCOLOR !

Example, writing in pinyin

Pinyin is commonly used around the world to teach Mandarin Chinese pronunciation, and
it is also used in various official contexts in China, such as street signs, dictionaries, and
learning textbooks. It makes learning Chinese easier for people whose native language
uses the Latin alphabet.

To write Chinese on a QWERTY keyboard, the Chinese generally use a system called
"pinyin input". Pinyin is a system of romanization of Mandarin Chinese, which uses the
Latin alphabet to represent the sounds of Mandarin.

On a QWERTY keyboard, users type Mandarin sounds using pinyin romanization. For
example, if someone wants to write the character "你" ("nǐ" meaning "you" in English),
they can type "ni".

In this very simplified code, you can program pinyin words to write in Mandarin. The
following code only works with the PuTTY terminal:

\ Work only with PuTTy terminal

internals

: chinese:

 create (c1 c2 c3 --)

 c, c, c,

 does>

 3 serial-type

 ;

forth

To find the UTF8 code of a Chinese character, copy the Chinese character, from Google
Translate for example. Example :

Good Morning --> 早安 (Zao an)

Copy 早 and go to PuTTy terminal and type :

key key key \ followed by key <enter>

paste the character 早. ESP32forth should display the following codes:

230 151 169

For each Chinese character, we will use these three codes as follows:

Page 100

169 151 230 chinese: Zao
137 174 229 chinese: Year

Use :

Zao An \ display 早安

Admit that programming like this is something other than what you can do in C language.
No?

Adapt breadboards to ESP32 board

Breadboards for ESP32
You have just received your ESP32 cards. And first bad surprise, this card fits very poorly on the
test board :

There is no breadboard specifically suited to ESP32 boards.

Build a breadboard suitable for the ESP32 board

We're going to build our own test plate. For this, two identical test plates must be
available.

On one of breadboard, we will remove a power line. To do this, use a cutter and cut from
below. You should be able to separate this power line like this :

Page 101

We can then reassemble the entire breadboard with this board. You have rafters on the sides of the
test plates to connect them together :

And there you go! We can now install our ESP32 card :

Page 102

The I/O ports can now be used without difficulty.

Powering the ESP32 board

Choice of power source
Here we will see how to power an ESP32 card. The goal is to give solutions for running
FORTH programs compiled by ESP32forth.

Powered by mini-USB connector
This is the simplest solution. We replace the
power supply coming from the PC with a
different source:

 a mains power supply such as those
used to charge a mobile phone;

 a backup battery for a mobile phone
(power bank).

Here, we power our ESP32 board with a
backup battery for mobile devices.

Power supply via 5V pin
The second option is to connect an external unregulated power supply to the 5V pin and
ground. Anything between 5 and 12 volts should work.

But it's best to keep the input voltage at around 6 or 7 Volts to avoid losing too much
power as heat on the voltage regulator.

Here are the terminals allowing an external 5-12V power supply:

Page 103

To use the 5V power supply, you need this equipment:

 two 3.7V lithium batteries

 a battery holder

 two dupont wires

We solder one end of each dupont wire to the terminals of the battery holder. Here our
holder accepts three batteries. We will only operate two battery units, so solder correctly
only two cells. The batteries are connected in series.

Once the dupont wires are soldered, we install the battery and check that the output
polarity is respected:

Now, we can power our ESP32 card via the 5V pin.

Page 104

WARNING : the battery voltage should be between 5 to 12 Volts.

Automatic start of a program
How can we be sure that the ESP32 card works well once powered by our batteries?

The simplest solution is to install a program and set this program to start automatically
when the ESP32 board is powered on. Compile this program:

18 constant myLED

0 value LED_STATE

: led.on (--)
HIGH dup myLED pin
to LED_STATE
;

: led.off (--)
LOW dup myLED pin
to LED_STATE
;
timers also \ select timers vocabulary

: led.toggle (--)
LED_STATE if
led.off
else
led.on
then
0 rerun \ warning, rerun removed in 7.0.7.15!
;

: led.blink (--)
myLED output pinMode
['] led.toggle 500000 0 interval
led.toggle
;

startup: led.blink
bye

Install LED on the G18 pin.

Turn off the power and reconnect the ESP32 board. If everything went well, the LED
should flash after a few seconds. This is a sign that the program is running when the
ESP32 board starts up.

Unplug the USB port and plug in the battery. The ESP32 board should boot up and the
LED will flash.

Page 105

The whole secret lies in the startup sequence: led.blink. This sequence freezes the
FORTH code compiled by ESP32forth and designates the word led.blink as the word to
be executed when starting ESP32forth after ESP32 board is powered on.

Page 106

Install and use the Tera Term terminal on Windows

Install Tera Term
The English page for Tera Term is here:

https://ttssh2.osdn.jp/index.html.en

Go to the download page, get the exe or zip file:

Install Tera Term. Installation is quick and easy.

Setting up Tera Term
To communicate with the ESP32 card, you must adjust certain parameters:

 click on Configuration -> serial port

Page 107

https://ttssh2.osdn.jp/index.html.en

For comfortable viewing:

 click on Configuration -> window

Page 108

For readable characters:

 click on Configuration -> font

Page 109

To find all these settings the next time you launch the Tera Term terminal, save the
configuration:

 click on Setup -> Save setup

 accept the name TERATERM.INI .

Using Tera Term
Once configured, close Tera Term.

Connect your ESP32 board to an available USB port on your PC.

Relaunch Tera Term, then click file -> new connection

Select the serial port :

Page 110

If everything went well, you should see this:

Compile source code in Forth language
First of all, let's remember that the FORTH language is on the ESP32 board! FORTH is not
on your PC. Therefore, you cannot compile the source code of a program in FORTH
language on the PC.

To compile a program in FORTH language, you must first open a source file on the PC
with the editor of your choice.

Then, we copy the source code to compile. Here, open source code with Wordpad:

Page 111

The source code in FORTH language can be composed and edited with any text editor:
notepad, PSpad, Wordpad..

Personally I use the Netbeans IDE. This IDE allows you to edit and manage source
codes in many programming languages.

Select the source code or portion of code that interests you. Then click copy. The selected
code is in the PC edit buffer.

Click on the Tera Term terminal window. Make Paste:

Simply validate by clicking OK and the code will be interpreted and/or compiled.

To run compiled code, simply type the word FORTH to launch, from the Tera Term
terminal.

Page 112

Access ESP32Forth by TELNET
Before managing a connection, you must establish a network link. The ESP32 board has a
WiFi interface. To establish a WiFi connection, you must:

 have a modem/router that manages WiFi connections

 have the available WiFi port SSID and its access key

Connection to the WiFi network is ensured by the word login :

\ connection to local WiFi LAN
: myWiFiConnect (--)

 z" Mariloo"

 z" 1925144D91DE5373C3XXXXXXXX"

 login

 ;

Running myWiFiConnect displays :

--> myWiFiConnect
192.168.1.8
MDNS started

Change the DNS name of the ESP32 board
To connect to an ESP32 board, there are two methods:

 by knowing its IP address on the internal network. In the above case, the IP
address is 192.168.1.8. This address may change if it is not locked by the WiFi
router;

 by the DNS name declared when connecting to the WiFi network. By default,
ESP32forth assigns the name forth to the card that connects to the WiFi network.

forth hostname instead of the IP address:

Page 113

If you want to communicate with several ESP32 cards on the same network, each card
must declare a distinct host name. Example code for two ESP32 cards:

\ set forthCOM3 for 1st ESP32 card

z" Mariloo"

z" 1925144D91DE5373C3C2D7XXXX"

login

z" forthCOM3" MDNS.begin

cr telnetd 552 server

Code for the second ESP32 card:

\ set forthCOM6 for 2nd ESP32 card

z" Mariloo"

z" 1925144D91DE5373C3C2D7959F"

login

z" forthCOM6" MDNS.begin

cr telnetd 552 server

forthCOM3 and forthCOM6 hostnames on the internal network.

Connecting to ESP32 boards by their hostname
Launch PuTTY. We enter the host name and the open port to access forthCOM3 :

Page 114

Figure 9: use DNS name with PuTTY

Then we launch a new PuTTY session and simply change the host name for this session,
here forthCOM6 . Here are two PuTTY sessions allowing you to communicate with these
two ESP32 cards:

To automatically launch the TELNET client on the ESP32 card, we will integrate our
connection code into autoexec.fs . Here is the code to type from the terminal. First type:

visual edit /spiffs/autoexec.fs

Then enter these few lines:

\ set forthCOM3 for 1st ESP32 card

z" Mariloo"

z" 1925144D91DE5373C3C2DXXXXX"

login

z" forthCOM3" MDNS.begin

cr telnetd 552 server

forth

Then do CTRL-X and Y. The code is saved and will be loaded the next time you start
ESP32forth. The TELNET client will be restarted automatically when ESP32forth starts. It is
no longer necessary to use the terminal to communicate with the ESP32 card declared
with the host name forthCOM3 :

 unplug the ESP32 board;

Page 115

Figure 10: PuTTY access to forthCOM3

Figure 11: PuTTY accesses two separate ESP32 boards

 reconnect the ESP32 board, but do not open the terminal!

 wait a few seconds...

 launch puTTY and activate a TELNET connection with forthCOM3 on port 552

TELNET access via PuTTY allows the same operations as via the terminal. Only restriction:
if you transmit FORTH code by copy/paste, limit the size of the transmitted code.

NOTE: ESP32 cards configured in this way can be accessed from the Internet if the
configuration of the WiFi router allows it.

Page 116

Management of source files by blocks
Use editor only for block file edits in the SPIFFS file system. Use RECORDFILE first. See
the RECORDFILE chapter.

The blocks
Here a block on an old computer:

A block is a storage space whose unit has 16 lines of 64 characters. The size of a block is
therefore 16x64=1024 bytes. It's exactly the size of a kilobyte!

Open a block file
A file is already open by default when ESP32forth starts.

blocks.fb file .

If in doubt, run default-use .

To find out what's in this file, use the editor commands by first typing editor .

Here are our first commands to know to manage the content of blocks:

 l lists the contents of the current block

 n selects the next block

 p selects the previous block

Page 117

ATTENTION: a block always has a number between 0 and n. If you end up with a
negative block number, it throws an error.

Edit the contents of a block
Now that we know how to select a particular block, let's see how to insert source code in
FORTH language...

One strategy is to create a source file on your computer using a text editor. You will then
just need to copy/paste your source code by line into the block files.

Here are the essential commands for managing the contents of a block:

 wipe empties the contents of the current block

 d deletes line n. The line number must be in the range 0..14. The following lines
move upwards. Example: 3 D erases the contents of line 3 and brings up the
contents of lines 4 to 15.

 e erases the contents of line n. The line number must be in the range 0..15. The
other lines do not go up.

 a inserts a line n. The line number must be in the range 0..14. The lines located
after the inserted line move back down. Example: 3 A test inserts test in line 3 and
moves down the contents of lines 4 to 15.

 r replaces the contents of line n. Example: 3 R test replaces the contents of line 3
with test

Here is our block 0 currently being edited:

At the bottom of the screen, line 10 R 6428, 6561, is being integrated into our
block at line 10.

Page 118

You notice that line 0 has no content. This generates an error when compiling the FORTH
code. To fix this, simply type 0 R followed by two spaces.

With a little practice, in a few minutes, you will have inserted your FORTH code into this
block.

Do the same for the following blocks if necessary. When moving to the next block, you
force the contents of the blocks to be saved by typing flush .

Compiling block contents
Before compiling the contents of a block file, we will check that their contents are well
saved. For that:

 type flush , then unplug the ESP32 board;

 wait a few seconds and reconnect the ESP32 board;

 type editor and l . You must find your block 0 with the content that you edited.

To compile the content of your blocks, you have two words:

 load preceded by the number of the block whose content we want to execute
and/or compile. To compile the contents of our block 0, we will execute 0 load ;

 thru preceded by two block numbers will execute and/or compile the contents of
the blocks as if we were executing a succession of load words . Example: 0 2
thru executes and/or compiles the contents of blocks 0 to 2.

The speed of execution and/or compilation of block content is almost instantaneous.

Practical step-by-step example
We will see, with a practical example, how to insert source code in block 1. We take a
code ready to be integrated into our block:

1 list

editor

 0 r \ tools for REGISTERS definitions and manipulations

 1 r : mclr { mask addr -- } addr @ mask invert and addr ! ;

 2 r : mset { mask addr -- } addr @ mask or addr ! ;

 3 r : mtst { mask addr -- x } addr @ mask and ;

 4 r : defREG: \ define a register, similar as constant

 5 r create (addr1 -- <name>) ,

 6 r does> (-- regAddr) @ ;

 7 r : .reg (reg --) \ display reg content

Page 119

 8 r base @ >r binary @ <#

 9 r 4 for aft 8 for aft # then next

10 r bl hold then next #>

11 r cr space ." 33222222 22221111 11111100 00000000"

12 r cr space ." 10987654 32109876 54321098 76543210"

13 r cr type r> base ! ;

14 r : defMASK: create (mask0 position --) lshift ,

15 r does> (-- mask1) @ ;

save-buffers

Simply copy/paste parts of the code above and run this code through ESP32 Forth:

 1 list to select and see what block 1 contains

 editor to select vocabulary editor

 copy the lines n r.... in packs of three and run them

 save-buffers hard-saves code in block file

Turn off the ESP32 board. Restart it. If you type 1 list you should see the code edited
and saved.

To compile this code, simply type 1 load .

Conclusion
The available file space for ESP32forth is close to 1.8MB. You can therefore worry-free
manage hundreds of blocks for source files in FORTH language. It is recommended to
install source codes of stable code parts. Thus, during the program development phase, it
will be much easier to integrate into your code in the development phase:

2 5 thru \ integrate pwm commands for motors

instead of systematically reloading this code via serial line or WiFi.

The other advantage of blocks is to allow the on-site embedding of parameters, data
tables, etc. which can then be used by your programs.

Page 120

Editing source files with VISUAL Editor

Use visual edit only for editing source files in the SPIFFS file system. Use RECORDFILE
first. See the RECORDFILE chapter.

Edit a FORTH source file

To edit a FORTH source file with ESP32forth, we will use the visual editor.

To edit a dump.fs file , proceed like this from the terminal connected to an ESP32 card
containing ESP32forth:

visual edit /spiffs/dump.fs

The full DUMP code is available here:

https://github.com/MPETREMANN11/ESP32forth/blob/main/tools/dumpTool.txt

The word edit is followed by the directory where the source files are stored:

 if the file does not exist, it is created;

 if the file exists, it is retrieved in the editor.

Note the name of the file you created.

fs as the file extension , for F orth S ource.

Editing the FORTH code
In the editor, move the cursor with the left-right-up-down arrows available on the
keyboard.

Page 121

https://github.com/MPETREMANN11/ESP32forth/blob/main/tools/dumpTool.txt

The terminal refreshes the display each time the cursor is moved or the source code is
modified.

To exit the editor :

 CTRL-S : saves the contents of the file currently being edited

 CTRL-X : exits editing:

◦ N: without saving file changes

◦ Y: with saving of changes

Compiling file contents
Compiling the contents of our dump.fs file is done like this:

include /spiffs/dump.fs

Compiling is much faster than via the terminal.

Page 122

The SPIFFS file system
ESP32Forth contains a rudimentary file system on internal Flash memory. The files are
accessible via a serial interface called SPIFFS for Serial Peripheral Interface Flash File
System.

Even though the SPIFFS file system is simple, it considerably increases the flexibility of
your developments with ESP32Forth:

 manage configuration files

 integrate software extensions accessible on request

 modularize developments into reusable functional modules

And many other uses that we will let you discover...

Access to the SPIFFS file system
To compile the contents of a source file edited by visual edit, type:

include /spiffs/dumpTool.fs

The word include must always be used from the terminal.

To see the list of SPIFFS files, use the word ls :

ls /spiffs/
\ displays:
\ dumpTool.fs

Here, the dumpTool.fs file has been saved. For SPIFFS, file extensions are irrelevant.
File names must not contain space characters or the / character.

Let's edit and save a new myApp.fs file with visual editor . Let's run ls again :

ls /spiffs/
\ displays:
\ dumpTool.fs
\ myApp.fs

The SPIFFS file system does not manage subfolders like on a Linux computer. To create a
pseudo directory, simply indicate it when creating a new file. For example, let's edit the
other/myTest.fs file . Once edited and saved, let's run ls :

ls /spiffs/
\ displays:
\ dumpTool.fs

Page 123

\ myApp.fs
\ other/myTest.fs

If you want to view only the files in this other pseudo directory , you must follow
/spiffs/ with the name of this pseudo directory :

ls /spiffs/other
\ displays:
\ myTest.fs

There is no option to filter file names or pseudo directories.

Handling files
To completely delete a file, use the word rm followed by the name of the file to be
deleted :

rm /spiffs/other/myTest.fs
ls /spiffs/

\ poster:

\dumpTool.fs
\myApp.fs

To rename a file, use the word mv :

mv /spiffs/myApp.fs /spiffs/main.fs
ls /spiffs/

\ displays:

\ dumpTool.fs
\ main.fs

To copy a file, use the word cp :

cp /spiffs/main.fs /spiffs/mainTest.fs
ls /spiffs/

\ displays:

\ dumpTool.fs
\ main.fs
\ mainTest.fs

To see the contents of a file, use the word cat :

cat /spiffs/dumpTool.fs
\ displays contents of dumpTool.fs

To save the contents of a string to a file, act in two phases :

 create a new file with touch

 save string contents with dump-file

touch /spiffs/mTest.fs \ creates new mTest,fs file
ls /spiffs/ \ displays:
\ dumpTool.fs
\ main.fs

Page 124

\ mainTest.fs
\ mTests.fs

\ save string "Insert my text into mTest" in mTest.fs
r| ." Insert my text into mTest" | s" /spiffs/mTest.fs" dump-file

include /spiffs/mTest.fs \ displays: Insert my text in mTest

Organize and compile your files on the ESP32 card
We will see how to manage files for an application being developed on an ESP32 board
with ESP32forth installed on it.

It is agreed that all files used are in ASCII text format.

The following explanations are given as advice only. They come from a certain experience
and aim to facilitate the development of large applications with ESP32forth.

Editing and transmitting source files
All the source files for your project are on your computer. It is advisable to have a
subfolder dedicated to this project. For example, you are working on an SSD1306 OLED
display. So you create a directory named SSD1306.

Regarding file name extensions, we recommend using the fs extension .

Editing files on a computer is carried out with any text file editor.

In these source files, do not use any characters not included in the ASCII code characters.
Some extended codes can disrupt program compilation.

These source files will then be copied or transferred to the ESP32 card via the serial link
and a terminal type program :

 by copy/pasted using visual on ESP32forth, to be reserved for small files ;

 with a specific procedure which will be detailed later for important files.

Conclusion
Files saved in the ESP32forth SPIFFS file system are permanently available.

If you take the ESP32 board out of service and then plug it back in, the files will be
available immediately.

The content of the files can be modified in situ with visual edit .

Page 125

This convenience will make developments much faster and easier.

Page 126

RECORDFILE and FORTH project management
This chapter is devoted to a single key element: RECORDFILE . This word allows fast
saving of files in the SPIFFS file system.

I advise you to read it carefully before trying to manipulate source files with visual or
editor .

Here's step-by-step how to save the definition of RECORDFILE and then use it effectively.

Save RECORDFILE in autoexec.fs file

When ESP32forth starts, the system tests for the presence of the autoexec.fs file . If
this file is present, its contents will be interpreted.

Here is the source code for RECORDFILE . This definition was developed by Bob
EDWARDS. Copy this code and paste it into the terminal window to compile it. This
maneuver will only have to be performed once:

\ These chars terminate all text lines in a file

create crlf 13 C, 10 C,

\ Records the input stream to a spiffs file until

\ an <EOF> marker is encountered, then close file

: RECORDFILE ("filename" "filecontents" "<EOF>" --)

 bl parse \ read the filename (a n)

 W/O CREATE-FILE throw >R \ create the file to record to -

 \ put file id on R stack

 BEGIN

 \ read a line of the file from the input stream

 tib #tib accept

 tib over

 S" <EOF>" startswith? \ does the line start with <EOF> ?

 DUP IF

 \ Yes, so drop the end line of the file containing <EOF>

 swap drop

 ELSE

 swap

 tib swap

 \ No, so write the line to the open file

 R@ WRITE-FILE throw

 \ and terminate line with cr-lf

 crlf 2 R@ WRITE-FILE throw

 THEN

 UNTIL \ repeat until <EOF> found

 R> CLOSE-FILE throw \ Close the file

;

Page 127

Once this word is compiled, we will see how to proceed so that this word is permanently
available from autoexec.fs .

On your PC, in your development area dedicated to ESP32Forth, create an autoexec.fs
file .

Copy the RECORDFILE code as given above into this autoexec.fs file. Add these two
lines of code:

RECORDFILE /spiffs/autoexec.fs

\ These chars terminate all text lines in a file

create crlf 13 C, 10 C,

\ Records the input stream to a spiffs file until

\ an <EOF> marker is encountered, then close file

: RECORDFILE ("filename" "filecontents" "<EOF>" --)

 bl parse \ read the filename (a n)

 W/O CREATE-FILE throw >R \ create the file to record to -

 \ put file id on R stack

 BEGIN

 \ read a line of the file from the input stream

 tib #tib accept

 tib over

 S" <EOF>" startswith? \ does the line start with <EOF> ?

 DUP IF

 \ Yes, so drop the end line of the file containing <EOF>

 swap drop

 ELSE

 swap

 tib swap

 \ No, so write the line to the open file

 R@ WRITE-FILE throw

 \ and terminate line with cr-lf

 crlf 2 R@ WRITE-FILE throw

 THEN

 UNTIL \ repeat until <EOF> found

 R> CLOSE-FILE throw \ Close the file

;

<EOF>

Copy this source code again, including the lines of code in red. Paste this code into the
terminal window again. Transmit this code to the ESP32 board.

Unlike the first manipulation which consists of compiling the code, this time this code is
saved in the /sipffs/autoexec.fs file.

autoexec.fs file is saved, run ls :

ls /spiffs/

Page 128

autoexec.fs file should appear in the file list. To check the contents of autoexec.fs,
type:

cat /spiffs/autoexec.fs

This should display the contents of autoexec.fs .

Use modified contents of autoexec.fs file

Relaunch ESP32forth. If all went well, RECORDFILE is now available when ESP32forth
starts. Run words . You should find RECORDFILE in the first words of the FORTH
dictionary:

RECORDFILE crlf FORTH spi oled telnetd registers webui login web-interface

httpd ok LED OUTPUT INPUT HIGH LOW tone freq duty adc pin default-key?

default-key default-type visual set-title page at-xy normal bg fg ansi….

Don't clutter autoexec.fs with other definitions. We will see how to create a project.

Breaking down a project with ESP32forth

A FORTH development project for ESP32forth is created on your PC:

 editing the source code with the text editor of your choice or an IDE (Netbeans for
example);

 have a terminal linked by USB to the ESP32 card;

 have ESP32forth enabled on the ESP32 board.

On the PC, work in a structured manner. The following explanations are only
recommendations.

Start by defining the general working directory for all ESP32forth developments. For
example, a folder named ESP32forth developments .

Then, in this folder, create two additional folders:

 _my Projects which is intended to accommodate all your projects;

 _sandbox which is intended to receive all small programs to be tested and not
having a specific use;

 Tools which is intended to accommodate all source files of general interest. These
are tested files and do not require adaptation;

 Documentation which is intended for documents of any kind.

Example project

I will use the TEMPVS FVGIT source code as an example project. The full source codes are
available here:

Page 129

https://github.com/MPETREMANN11/ESP32forth/tree/main/__my%20projects/display/
OLED%20SSD1306%20128x32/TEMPVS%20FVGIT

The first file to create is called main.fs. This file must be written in a TEMPVS FVGIT
folder:

ESP32forth developments

 +-------------> _my Projects

 +-------------> TEMPVS FVGIT

 +-------------> main.fs

 config.fs

 strings.fs

Once again, these are only recommendations. The main interest is to bring together all
the components of a single project. Contents of the main.fs file :

RECORDFILE /spiffs/main.fs

DEFINED? --tempusFugit [if] forget --tempusFugit [then]

create --tempusFugit

s" /spiffs/strings.fs" included

s" /spiffs/RTClock.fs" included

s" /spiffs/clepsydra.fs" included

s" /spiffs/config.fs" included

s" /spiffs/oledTools.fs" included

(part of code removed here)

<EOF>

In red, we find our word RECORDFILE. To save the code from main.fs to the SPIFFS file
system on the ESP32 board, simply copy this source code and pass it to ESP32forth with
the terminal program.

In blue, in the code above, the content of main.fs makes a call to the strings.fs file. The
source code for this file comes from the Tools folder. It is a copy of strings.fs which is
then modified like this:

RECORDFILE /spiffs/strings.fs

structures

struct __STRING

 ptr field >maxLength \ point to max length of string

 ptr field >realLength \ real length of string

 ptr field >strContent \ string content

forth

(... removed part of file)

\ work only with strings. Don't use with other arrays

: input$ { addr len -- }

 addr len maxlen$ nip accept

 addr __STRING - cell+ >realLength !

Page 130

https://github.com/MPETREMANN11/ESP32forth/tree/main/__my%20projects/display/OLED%20SSD1306%20128x32/TEMPVS%20FVGIT
https://github.com/MPETREMANN11/ESP32forth/tree/main/__my%20projects/display/OLED%20SSD1306%20128x32/TEMPVS%20FVGIT

 ;

<EOF>

Copying and passing this source code creates the strings.fs file in the SPIFFS file system
on the ESP32 board.

At this stage, we start to have several files on the ESP32 card. To compile all the
transferred files, we will simply execute:

include /spiffs/main.fs

There is no limit to the files that can be saved on the ESP32 card, other than a physical
space limit. The available space in the SPIFFS file system exceeds 1MB of recording space.

If you need to modify the content of a general-purpose software component, always do so
on a copy of the source file for that component. Remember to version and date these
modifications.

For each of the files in this project, we integrate RECORDFILE and its <EOF> terminator

.

In each project, we find the main.fs and config.fs files. But their content is adapted to
each project. For a specific project, all fs extension files are loaded onto the ESP32 board
in the SPIFFS file system. Compiling their content is incredibly fast. But above all, the
content of these files is preserved between two restarts of the ESP32 card. At the
slightest blockage of FORTH it is easy to restart the card and find all the word definitions
of the project without requiring a new transfer via the terminal.

The notion of a black box

It's an old concept, which dates from the time when we mainly developed in assembler on
micro-controller board. We also find it with classes in object programming. In the concept
of “black box”, we must consider a subroutine, a function, a method as a black box. We
know what we put in there. We know what can come out of it or how this box works, but

Page 131

Figure 12: Structuration de projets avec l'IDE Netbeans

we don't worry about its internal functioning. We trust those who programmed the “black
box”.

In FORTH language, a word has a definition. When you pass parameters through the
stack, in the end, only the designer of the definition must ensure the proper functioning of
the definition. And to ensure the proper functioning of a definition, it is strongly
recommended not to make definitions that are too long.

My tip for marking verified code is simply to put a comment line just before the definition.
Example of unverified code:

: fpi* (fn – fn*pi)

 pi f*

 ;

The code will be tested in a sandbox or in a project file. Never mind. Once tested with
different values, I modify the source code:

\ multiply fn by pi

: fpi* (fn – fn*pi)

 pi f*

 ;

If you doubt the reliability of your code, you can define a tests.fs file.

This file is only intended for carrying out unit test batteries. See the definition of the word
assert(which carries out these tests, definition visible here:

https://github.com/MPETREMANN11/ESP32forth/blob/main/tools/assert.fs

And here is an example of tests saved in our tests.fs file :

assert(0 >gray 0 =)

assert(1 >gray 1 =)

assert(2 >gray 3 =)

assert(3 >gray 2 =)

assert(4 >gray 6 =)

assert(5 >gray 7 =)

assert(6 >gray 5 =)

assert(7 >gray 4 =)

assert(generates an alert if the tested word does not behave as expected.

For a definition as simple as that of fpi* , a battery of tests may be necessary if we have
not made the word f* reliable . We integrate these tests into the main.fs file :

RECORDFILE /spiffs/main.fs

DEFINED? --tempusFugit [if] forget --tempusFugit [then]

create --tempusFugit

s" /spiffs/strings.fs" included

s" /spiffs/RTClock.fs" included

Page 132

https://github.com/MPETREMANN11/ESP32forth/blob/main/tools/assert.fs

s" /spiffs/clepsydra.fs" included

s" /spiffs/config.fs" included

s" /spiffs/oledTools.fs" included

s" /spiffs/tests.fs" included

<EOF>

tests.fs file must also be transferred to the ESP32 card.

In this way, the complete compilation cycle also includes a battery of tests. Testing does
not guarantee that the code is reliable. They only make it possible to detect possible side
effects if we have to modify parts of the application code.

In summary, I advise fragmenting your code by systematically integrating these files:

 main.fs which is the main file. Usually, whatever the name of the project, you will
compile it with a simple execution of include /spiffs/main.fs

 config.fs which contains the global configuration parameters, WiFi access
passwords for example;

 tests.fs which contains a battery of tests. If you are not doing any testing, creating
this file is not necessary.

All other files will have the extension fs , except for files not processed by ESP32forth.

By following these few guidelines, you will have an easier time managing complex
applications. Saving time each time reliable parts of code are compiled and saved in files
in the SPIFFS file system is the main argument for adopting RECORDFILE .

Page 133

Editing and managing source files for ESP32forth
As with the vast majority of programming languages, source files written in FORTH
language are in simple text format. The extension of forth files is free:

 txt generic extension for all text files;

 forth used by some FORTH programmers;

 fth compressed form for FORTH;

 4th other compressed form for FORTH;

 fs our favorite extension…

Text file editors

On Windows, edit file editor is the simplest:

editing with edit under Windows 11

Other editors, such as WordPad , are not recommended because you risk saving the
FORTH language source code in a file format that is not compatible with ESP32forth.

On Linux, the equivalent is called gEdit . MacOS also has a simple text editor.

If you use a custom file extension, such as fs , for your FORTH language source files, you
must have this file extension recognized by your system to allow them to be opened by
the text editor.

Use an IDE

Nothing stops you from using an IDE 4. For my part, I have a preference for Netbeans
which I also use for PHP, MySQL, Javascript, C, assembler… It is a very powerful IDE and
as efficient as Eclipse :

4 Integrated Development Environment

Page 134

editing with Netbeans

Netbeans offers several interesting features:

 version management with GIT ;

 recovery of previous versions of modified files;

 file comparison with Diff ;

 one-click FTP transmission to the online hosting of your choice;

GIT option , possibility of sharing files on a repository and managing collaborations on
complex projects. Locally or collaboratively, GIT allows you to manage different versions
of the same project, then merge the versions. You can create your local GIT repository.
Each time a file or a complete directory is committed, the developments are kept as is.
This allows you to find old versions of the same file or file folder.

GIT commit operation in Netbeans of a folder

With NetBeans, you can define a development branch for a complex project. Here we
create a new branch:

Page 135

creating a branch on a project

Example of a situation that justifies the creation of a branch:

 you have a functional project;

 you plan to optimize it;

 create a branch and do the optimizations in this branch…

Changes to source files in a branch have no influence on files in the main trunk .

Incidentally, it is more than advisable to have physical backup media. An SSD hard drive
costs around €50 for 300Gb of storage space. The read or write access speed of SSD
media is simply astonishing!

Storage on GitHub

GitHub 5website is, along with SourceForge 6, one of the best places to store source
files. On GitHub, you can share a working folder with other developers and manage
complex projects. The Netbeans editor can connect to the project and allows you to pass
or retrieve file changes.

5 https://github.com/
6 https://sourceforge.net/

Page 136

storing files on GitHub

On GitHub , you can manage project forks . You can also make certain parts of your
projects confidential. Here the branches in the flagxor/ueforth projects:

access to a project branch

Some good practices

The first good practice is to name your working files and folders correctly. You are
developing for ESP32Forth, so create a folder named ESP32forth .

For various tests, create a sandbox subfolder in this folder .

For well-constructed projects, create a folder per project. For example, you want to
control a robot, create a robot subfolder .

tools subfolder . If you are using a file from this tools folder in a project, copy and paste
that file into that project's folder. This will prevent a modification of a file in tools from
subsequently disrupting your project.

The second best practice is to distribute the source code of a project into several files:

 config.fs to store project settings;

Page 137

 folder documentation to store your preferred file format for project
documentation;

 myApp.fs for your project definitions. Choose a fairly explicit file name. For
example, to manage a robot, take the name robot-commands.fs .

FORTH source file naming example

It is the content of these files which must be transferred via the terminal to the ESP32
card so that ESP32forth interprets and compiles the FORTH code.

The main.fs file

ESP32forth manages a SPIFFS file system 7. See the chapter The SPIFFS file system .

These files are therefore stored in the ESP32 card and can be read by ESP32forth. If you
wrote a config.fs file in the SPIFFS file system, here is the line of code to write in
main.fs to access the contents of config.fs :

s" /spiffs/config.fs" included

From this point on, you have two options for interpreting the contents of config.fs . From
the terminal:

include /spiffs/config.fs

Or

include /spiffs/main.fs

The point is that main.fs can call other files. Example :

\ OLED SSD1306 128x32 dev and display tests
s" /spiffs/config.fs" included
s" /spiffs/SSD10306commands.fs" included

Processing many files takes less than a second. This strategy avoids the repeated
transmission of the source code by serial link via the terminal.

And when you manage multiple projects on multiple ESP32 boards, it's easier to test each
project with a simple include /spiffs/main.fs command.

7 Serial Peripheral Interface Flash File System

Page 138

Quickly save files to SPIFFS

This method was developed by Bob EDWARDS. Code to compile:

\ These chars terminate all text lines in a file
create crlf 13 C, 10 C,

\ Records the input stream to a spiffs file until
\ an <EOF> marker is encountered, then close file
: RECORDFILE ("filename" "filecontents" "<EOF>" --)
 bl parse \ read the filename (a n)
 W/O CREATE-FILE throw >R \ create the file to record to -

 \ put file id on R stack

 BEGIN
 \ read a line of the file from the input stream

 tib #tib accept
 tib over
 S" <EOF>" startswith? \ does the line start with <EOF> ?
 DUP IF
 \ Yes, so drop the end line of the file containing <EOF>

 swap drop
 ELSE
 swap
 tib swap
 \ No, so write the line to the open file

 R@ WRITE-FILE throw
 \ and terminate line with cr-lf

 crlf 2 R@ WRITE-FILE throw
 THEN
 UNTIL \ repeat until <EOF> found
 R> CLOSE-FILE throw \ Close the file
;

RECORDFILE works is simple. This word is followed by the name of the destination file in
the SPIFFS file system.

The following lines contain the code to save.

At the end of the code, simply add the <EOF> directive. WARNING: write <EOF> and not
<eof> !!! Example :

RECORDFILE /spiffs/main.fs

\ OLED SSD1306 128x32 dev and display test
s" /spiffs/SSD1306/config.fs" included
s" /spiffs/SSD1306/commands.fs" included
<EOF>

Then, we copy all the code, from RECORDFILE to <EOF> . We paste this code into the
terminal window and transmit it to the ESP32 card. This is what the terminal displays
while transmitting the source code:

--> RECORDFILE /spiffs/main.fs
--> \ OLED SSD1306 128x32 dev and display test
--> s" /spiffs/SSD1306/config.fs" included
--> s" /spiffs/SSD1306/commands.fs" included
--> <EOF>
 ok

Page 139

You can check that the new file has been saved:

ls /spiffs/ \ displays :
SSD1306/config.fs
SSD1306/commands.fs
SSD1306/dispChars.fs
SSD1306.fs
main.fs

main.fs file is successfully saved.

If you modify the contents of a source file and save it with RECORDFILE , this modified
content will replace the previously saved content.

In our example, we saved a file of a few lines. But it also works for very large source files.
Preferably send large, finalized files that no longer require modifications or adjustments.

Have the word RECORDFILE when starting ESP32forth

Use visual to create or edit the autoexec.fs file :

visual edit /spiffs/autoexec.fs

This opens the visual editor . Copy the following code:

create crlf 13 C, 10 C,

: RECORDFILE

 bl parse

 W/O CREATE-FILE throw >R

 BEGIN

 tib #tib accept

 tib over

 S" <EOF>" startswith?

 DUP IF

 swap drop

 ELSE

 swap

 tib swap

 R@ WRITE-FILE throw

 crlf 2 R@ WRITE-FILE throw

 THEN

 UNTIL

 R> CLOSE-FILE throw

;

visual edit space . At the end of editing, press CTRL-S (Save) then CTRL-X and Y to exit
visual .

Relaunch ESP32forth. If all went well, RECORDFILE is now available when ESP32forth
starts:

RECORDFILE crlf FORTH spi oled telnetd registers webui login web-interface

httpd ok LED OUTPUT INPUT HIGH LOW tone freq duty adc pin default-key?

default-key default-type visual set-title page at-xy normal bg fg ansi….

Page 140

Page 141

Managing a traffic light with ESP32

GPIO ports on the ESP32 board
GPIO ports (General Purpose Input/Output) are input-output ports widely used in the
world of microcontrollers.

The ESP32 board comes with 48 pins having multiple functions. Not all pins are used on
ESP32 development boards, and some pins cannot be used.

There are many questions about how to use ESP32 GPIOs. Which connectors should you
use? Which connectors should you avoid using in your projects?

If we look under a magnifying glass at an ESP32 card, we see this:

Each connector is identified by a series of letters and numbers, here from left to right in
our photo: G22 TXD RXD G21 GND G19 G18, etc...

The connectors that interest us for this handling are prefixed by the letter G followed by
one or two numbers. For example, G2 corresponds to GPIO 2.

Defining and operating a GPIO connector in output mode is quite simple.

Page 142

Mounting the LEDs
The assembly is quite simple and only one photo is enough:

 Green LED connected to G2 - green wire

 Yellow LED connected to G21 - yellow wire

 Red LED connected to G17 - red wire

 black wire connected to GND

Our code uses the word include followed by the file to load.

We define our LEDs with defPin:

\ Use:

\ numGPIO defPIN: PD7 (define portD pin #7)

: defPIN: (GPIOx --- <word> | <word> --- GPIOx)

 value

 ;

 2 defPIN: ledGREEN
21 defPIN: ledYELLOW
17 defPIN: ledRED

: LEDinit
 ledGREEN output pinMode
 ledYELLOW output pinMode
 ledRED output pinMode
 ;

Many programmers have the bad habit of naming connectors by their number. Example :

Page 143

17 defPin: pin17

Or

17 defPin: GPIO17.

To be effective, you must name the connectors by their function. Here we define the
ledRED or ledGREEN connectors .

For what? Because the day you need to add accessories and release for example the G21
connector, simply redefine 21 defPIN: ledYELLOW with the new connector number. The
rest of the code will be unchanged and usable.

Management of traffic lights
Here is the part of code that controls our LEDs in our traffic light simulation:

\ traficLights execute one light cycle
: trafficLights (---)
 high ledGREEN pin 3000 ms low ledGREEN pin
 high ledYELLOW pin 800 ms low ledYELLOW pin
 high ledRED pin 3000 ms low ledRED pin
 ;

\ classic traffic lights loop
: lightsLoop (---)
 LEDinit
 begin
 trafficLights
 key? until
 ;

\ german trafic light style
: Dtraffic (---)
 high ledGREEN pin 3000 ms low ledGREEN pin
 high ledYELLOW pin 800 ms low ledYELLOW pin
 high ledRED pin 3000 ms
 ledYELLOW high 800 ms
 \ simultaneous red and yellow ON
 high ledRED pin \ simultaneous red and yellow OFF
 high ledYELLOW pin
 ;

\ german traffic lights loop
: DlightsLoop (---)
 LEDinit
 begin
 Dtraffic
 key? until
 ;

Conclusion
This traffic light management program could perfectly have been written in C language.
But the advantage of the FORTH language is that it gives control, via the terminal, to
analyze, debug and modify functions very quickly (in FORTH we say words).

Page 144

Managing traffic lights is an easy exercise in C language. But when the programs become
a little more complex, the compilation and upload process quickly becomes tedious.

Simply act via the terminal and simply copy/paste any fragment of FORTH language code
for it to be compiled and/or executed.

If you are using a terminal program to communicate with the ESP32 board, simply type
DlightsLoop or lightsLoop to test how the program works. These words use a
conditional loop. Simply press a key on the keyboard and the word stops playing at the
end of the loop.

Page 145

Direct access to GPIO registers
In some situations, it is much more beneficial to have direct access to the GPIO registers
on the ESP32 board. For example, to manage complex activation or deactivation
sequences.

With ESP32forth, access to an ESP32 register is done using words m! and m@ . These
words allow in particular direct access to GPIO registers.

The GPIO register managing the first 32 inputs/outputs is at the hexadecimal address
3ff44004:

$3ff44004 defREG: GPIO_OUT_REG

If we plug an LED into the GPIO2 port, we can turn it on and off like this:

0 GPIO_OUT_REG m! \ turn LED on G2 off

4 GPIO_OUT_REG m! \ turn LED on G2 on

The disadvantage, in sequence 4 GPIO_OUT_REG m! , this is what only activates the G2
port. If other ports were active, they will be disabled. The solution coming to mind would
therefore be to read the state of the GPIO_OUT_REG register using m@ and perform
logical operations on the value before reinjecting it by m!.

It turns out that the ESP32 card has dedicated registers which perform these selective
activation and deactivation operations without going through these logical operations on
this GPIO_OUT_REG register.

Use of words m! and m@

These two words are defined in the registers vocabulary. These are also the only words
defined in this vocabulary:

 m! (val shift mask addr --)
modifies the contents of a register pointed to by addr , applies a logical mask with
mask and shifts val by n bits according to shift ;

 m@ (shift mask addr -- val)
reads the contents of a register pointed to by addr, applies a logical mask with
mask and shifts by n bits according to shift .

In order to fully understand how these two words work, we will first define a word which
displays the 32-bit content of any address :

\ display n in bbbbbbbb bbb..... format

: .binDisp (n --)

 base @ >r binary \ select binary base

 <# \ start num formating

Page 146

 4 for

 aft

 8 for

 aft # then

 next

 bl hold \ add 'space' in number formating

 then

 next

 #>

 cr space ." 33222222 22221111 11111100 00000000"

 cr space ." 10987654 32109876 54321098 76543210"

 cr type \ display n in binary format

 r> base ! \ restore current numeric base

 ;

Let's define any memory space, initialized with a zero value:

create myReg

 0 ,

Here's how to display the contents of myReg with .binDisp:

myReg @ .binDisp \ display :

\ 33222222 22221111 11111100 00000000

\ 10987654 32109876 54321098 76543210

\ 00000000 00000000 00000000 00000000 ok

Bit b22 has been highlighted. Here it is at zero. ATTENTION: the bits are numbered from
0 to 31 in the display rendered by .binDisp. Here is how to set this single b22 bit to
one :

registers

1 22 $ffffffff myReg m!

forth

myReg @ .binDisp \ display :

\ 33222222 22221111 11111100 00000000

\ 10987654 32109876 54321098 76543210

\ 00000000 01000000 00000000 00000000 ok

It's done. But we took the 32-bit value $ffffffff as a mask . The choice of this mask
unfortunately allows an action on all the bits of the content of myReg. If we want to act
only on one or more bits, we must choose a mask which limits the action of the word m!.
For example, to set the single bit b07 to 1, you will need to use a mask. Here is this mask
in binary:

00000000 00000000 00000000 1 0000000

Which translates in hexadecimal to $00000080 . If you have any doubts, you can check
with .binDisp:

$00000080 .binDisp \ display :

Page 147

\ 33222222 22221111 11111100 00000000

\ 10987654 32109876 54321098 76543210

\ 00000000 00000000 00000000 10000000 ok

This binary mask corresponds to bit b07. We will now set this bit to 1 in myReg without
modifying the other bit b22 already at one:

registers

1 7 $00000080 myReg m!
forth
myReg @ .binDisp \ display :
\ 33222222 22221111 11111100 00000000
\ 10987654 32109876 54321098 76543210
\ 00000000 01000000 00000000 10000000 ok

Among the parameters necessary for m! , we have the pair shift addr. To simplify the
ESP32forth code, we will create a word defMASK ::

\define a mask for registers

\ define a mask for registers

: defMASK: (comp: mask0 position -- <name> | exec: -- position mask1)

 create

 dup ,

 lshift ,

 does>

 dup @

 swap cell + @

 ;

To define a mask, you only need two parameters:

 mask0 : 1 is the minimum mask on one bit, 3 on 2 bits, 7 on 3 bits, etc...

 position : indicates the position, in the interval [0..31]

To modify for example the single bit b12, we can define our mask as follows :

1 12 defMASK: mB12

To set this single bit b12 to 1:

registers

1 mB12 myREG m!

forth

myREG @ .binDisp \ display :

\ 33222222 22221111 11111100 00000000

\ 10987654 32109876 54321098 76543210

\ 00000000 01000000 00010000 10000000 ok

To reset this bit b12:

registers

Page 148

0 mB12 myREG m!

forth

myREG @ .binDisp \ display :

\ 33222222 22221111 11111100 00000000

\ 10987654 32109876 54321098 76543210

\ 00000000 01000000 00000000 10000000 ok

Masks defined by defMASK: are applicable to any register. This is what you will see later.
These masks are also very useful for determining the state of a specific bit or bits. Let's
test the state of our bit b12 with m@ :

registers

mB12 myREG m@ . \ display : 0

forth

Let's reset this bit b12 to 1 and test it again:

registers

1 mB12 myREG m!

1 mb12 myREG m@ . \ display : 1

forth

We now have the keys to act bit by bit on the contents of any register. In this chapter, we
will particularly focus on the GPIO_OUT_REG register :

\ GPIO 0-31 output register R/W

$3FF44004 defREG: GPIO_OUT_REG

The GPIO_OUT_REG register

This register allows you to control GPIO ports G0 to G31. We will wire three colored diodes
on pins G25, G26 and G27. We therefore define three constants attached to these pins:

\ definie LEDs GPIOs

25 constant ledRED

26 constant ledYELLOW

27 constant ledGREEN

In the chapter Managing a traffic light with ESP32 , we defined these same words with
defPIN: . Here we do it with constant, which has the same behavior. We will use these
constants to define the masks :

\ define masks for red yellow and green LEDs

1 ledRED defMASK: mLED_RED

1 ledYELLOW defMASK: mLED_YELLOW

1 ledGREEN defMASK: mLED_GREEN

To activate the red LED on G25, enter:

registers

1 mLED_RED GPIO_OUT_REG m!

forth

Page 149

To avoid the recurring selection of the registers vocabulary, we define two words which
will simplify programming for us:

\ set mask in addr

: regSet (val shift mask addr --)

 [registers] m! [forth]

 ;

\ test mask in addr

: regTst (shift mask addr -- val)

 [registers] m@ [forth]

 ;

Activation of the red LED on G25:

1 mLED_RED GPIO_OUT_REG regSet

This will work, provided the GPIO pins are correctly initialized. This is what we are going
to address.

Activation and deactivation registers

The register names are taken from the ESP32 Technical Reference Manual documentation
(pdf):
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_
manual_en.pdf

Before turning on and off our LEDs connected to GPIO ports G25 G26 and G27, we will
start by initializing these ports. This is done by acting on the GPIO_ENABLE_REG register:

: GPIO.init (--)

 1 mLED_RED GPIO_ENABLE_REG regSet

 1 mLED_YELLOW GPIO_ENABLE_REG regSet

 1 mLED_GREEN GPIO_ENABLE_REG regSet

 ;

Executing the word GPIO.init initializes the output ports G25 G26 and G27. Let's test
LEDs on :

GPIO.init

1 mled_red GPIO_OUT_REG regSet

1 mled_yellow GPIO_OUT_REG regSet

1 mled_green GPIO_OUT_REG regSet

If the LEDs are wired correctly, they should light up. Here the lighting of the LEDs is
carried out sequentially by the word regSet repeated three times. By acting directly on
the contents of the GPIO_OUT_REG register, we can light up the three LEDs in a single
execution of regSet :

GPIO.init

7 mled_red

Page 150

https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf

 mled_yellow nip +

 mled_green nip + GPIO_OUT_REG regSet

Let's see how to use the two registers GPIO_OUT_W1TS_REG and GPIO_OUT_W1TC_REG to
act indirectly on the state of one or more GPIO ports :

 GPIO_OUT_W1TS_REG : GPIO Output Write to Set Register is used to set the
bits corresponding to the GPIO pins in "Output" mode to logic high (1). It allows
you to activate the specified GPIO outputs, by setting the corresponding bits to 1.

 GPIO_OUT_W1TC_REG : GPIO Output Write to Clear Register is used to clear
(zero) specific bits in the GPIO output register. Each bit of this register is associated
with a particular GPIO pin, and by writing a 1 to a given bit of this register, you
can zero (clear) the corresponding output of the GPIO pin.

We can therefore light all our LEDs in a single regSet sequence like this :

7 mled_red

 mled_yellow nip +

 mled_green nip + GPIO_OUT_W1TS_REG regSet

And to turn off all the LEDs in a single regSet sequence, we will execute this :

7 mled_red

 mled_yellow nip +

 mled_green nip + GPIO_OUT_W1TS_REG regSet

If we want to manage a timed on and off cycle of an LED, we will create a word that
manages an on and off cycle :

\ define a ON and OFF sequence for one LED

: GPIO.on.off.sequence { position mask delay -- }

 1 position mask GPIO_OUT_W1TS_REG regSet

 delay ms

 1 position mask GPIO_OUT_W1TC_REG regSet

 ;

We are going to test our word GPIO.on.off.sequence:

mLED_RED 1000 GPIO.on.off.sequence

This sequence should light the red LED for one second. Now let's define a complete cycle
simulating a fire at a road intersection:

: traffic-light (--)

 mLED_GREEN 3000 GPIO.on.off.sequence

 mLED_YELLOW 1000 GPIO.on.off.sequence

 mLED_RED 3000 GPIO.on.off.sequence

 ;

Running traffic-light will simulate a classic road light. However, we cannot simulate a
road light where the red and orange lights are on at the same time. We will therefore first

Page 151

write the word TRAFFIC.sequence which uses the code of GPIO.on.off.sequence, with
the difference that we will also need to use a value in addition to the other parameters :

\ define a ON and OFF sequence

: TRAFFIC.sequence { val position mask delay -- }

 val position mask GPIO_OUT_W1TS_REG regSet

 delay ms

 val position mask GPIO_OUT_W1TC_REG regSet

 ;

Then we define these four words which will make it possible to manage a complex road
fire cycle:

: TRAFFIC.red (--)

 1 mLED_RED 2500 TRAFFIC.sequence ;

: TRAFFIC.yellow (--)

 1 mLED_YELLOW 1000 TRAFFIC.sequence ;

: TRAFFIC.green (--)

 1 mLED_GREEN 3000 TRAFFIC.sequence ;

: TRAFFIC.red-yellow (--)

 3 mLED_RED

 mLED_YELLOW nip + 500 TRAFFIC.sequence ;

We now define a road light cycle as we might encounter it in Germany :

: TRAFFIC.german.cycle (--)

 TRAFFIC.red

 TRAFFIC.red-yellow

 TRAFFIC.green

 TRAFFIC.yellow

 ;

In Germany, traffic lights have four cycles.
The particularity of these lights is to
simultaneously light the red and yellow lights
before switching back to the green light.

And finally, we test our road light cycle in a
loop:

: TRAFFIC.loop (--)

 begin

 TRAFFIC.german.cycle

 key? until

 ;

Running TRAFFIC.loop will simulate our road light. When the sequence TRAFFIC.red-
yellow arrives , we can see that the yellow and red lights are lit simultaneously.

We saw in this chapter how to act on several GPIO outputs at the same time by acting
directly on the GPIO registers.

Page 152

Figure 13: four-state light cycle

1 2 3 4

However, with ESP32 cards, it is not recommended to manage too many LEDs
simultaneously. The ESP32 card should be reserved for managing signals to very energy-
efficient accessories. We will therefore avoid assemblies such as 8 to 16 LEDs to create a
chase type effect for example, unless we use control elements using a separate power
supply.

Page 153

Hardware interrupts with ESP32forth

Interruptions
When we want to manage external events, a push button for example, we have two
solutions :

 test the state of the button as regularly as possible, through a loop. We will act
according to the state of this button.

 use an interrupt. We assign the execution code to an interrupt attached to a pin.
The button is connected to this pin and the state change will execute this word.

The interrupt solution is the most elegant. It allows you to relieve the main program by
avoiding monitoring the button in a loop.

In his ESP32forth documentation, Brad NELSON gives a simple example of interrupt
handling :

17 input pinMode
: test ." pinvalue: " 17 digitalRead . cr ;
' test 17 pinchange

Except that this example, as written, has a good chance of not working. We will see why
and provide the elements to make it work.

Mounting a push button
The button is connected as an input to the 3.3V power supply of the ESP32 board.

The push button output is connected to the GPIO17 pin. That's all.

For Brad NELSON's example to be functional, you must select the interrupts
vocabulary before configuring the interrupt using pinchange . Along the way, we will
define the button constant :

17 constant button
button input pinMode
: test ." pinvalue: "
 button digitalRead . cr
 ;
interrupts
' test button pinchange
forth

It works, but there is an unexpected effect which causes the interrupt to be triggered
unexpectedly :

Page 154

The hardware solution would consist of putting a high value resistor at the button output
and connected to GND.

Software consolidation of the interrupt
In the ESP32 card, you can activate a resistor on any GPIO pin. This activation is carried
out by the word gpio_pulldown_en . This word accepts as a parameter the GPIO pin
number whose resistance must be activated. In return this word returns 0 if the action
was successful, an error code otherwise :

17 constant button
button input pinMode
: test ." pinvalue: "
 button digitalRead . cr
 ;
interrupts
button gpio_pulldown_en drop
' test button pinchange
forth

The result of executing the interrupt is significantly better :

At each change of state, we have an interruption. On the screenshot above, each state
change displays pinvalue: 1 then pinvalue: 0 .

Page 155

It is possible to take into account an interruption on the rising edge alone. This is possible
by indicating :

button GPIO_INTR_POSEDGE gpio_set_intr_type drop

The word gpio_set_intr_type accepts these parameters:

 GPIO_INTR_ANYEDGE to manage rising or falling edge interrupts

 GPIO_INTR_NEGEDGE to handle interrupts on falling edge only

 GPIO_INTR_POSEDGE to manage interrupts on rising edge only

 GPIO_INTR_DISABLE to disable interrupts

Complete FORTH code with rising edge detection:

17 constant button
0 constant GPIO_PULLUP_ONLY
button input pinMode
: test ." pinvalue: "
 button digitalRead . cr
 ;
interrupts
button gpio_pulldown_en drop
button GPIO_INTR_POSEDGE gpio_set_intr_type drop
' test button pinchange
forth

Further information
For ESP32, all GPIO pins can be used as interrupt
except GPIO6 to GPIO11.

Do not use pins colored orange or red. Your program
might behave unexpectedly when using these.

Page 156

Using the KY-040 rotary encoder

Encoder Overview
To vary a signal, we have several solutions:

 a variable resistor in a potentiometer

 two buttons managing the variation by software

 a rotary encoder

The rotary encoder is an interesting solution. It can be made to act as a potentiometer,
with the advantage of not having a start and end stop.

Its principle is very simple. Here are the signals emitted by our rotary encoder :

Here is our encoder :

Page 157

Internal functioning diagram :

According to this diagram, two terminals interest us :

 A (DT) -> switch

 B (CLK) -> switch Y

This encoder can be powered with 5V or 3.3V. This suits us, because the ESP32 card has a
3.3V output.

Mounting the encoder on the breadboard
Wiring our encoder to the ESP32 board only requires 4 wires :

Page 158

PLEASE NOTE : the position of pins G4 and G15 may vary depending on the version of
your ESP32 card.

Analysis of encoder signals
As our encoder is connected, each terminal A or B receives a voltage, here 3.3V, the
intensity of which is limited by a resistor of 10Kohms.

Page 159

Analysis of the signal on terminal G15 clearly shows the presence of the 3.3V voltage :

In this signal capture, the low level on terminal G15 appears when operating the encoder
control rod. When idle, the signal on terminal G15 is at high level.

This changes everything, because, at the programming level, we must process the G15
interrupt as a falling edge.

Encoder programming
The encoder will be managed by interrupt. Interrupts trigger the program only if a
particular signal reaches a well-defined level.

We will manage a single interrupt on the GPIO G15 terminal:

interrupts

\ enable interrupt on GPIO G15
: intG15enable (--)
 15 GPIO_INTR_POSEDGE gpio_set_intr_type drop
 ;

\ disable interrupt on GPIO G15
: intG15disable (--)
 15 GPIO_INTR_DISABLE gpio_set_intr_type drop
 ;

: pinsInit (--)
 04 input pinmode \ GO4 as an input
 04 gpio_pulldown_en drop \ Enable pull-down on GPIO 04
 15 input pinmode \ G15 as an input

Page 160

 15 gpio_pulldown_en drop \ Enable pull-down on GPIO 15
 intG15enable
 ;

In the word pinsInit , we initialize the GPIO pins G4 and G15 as input. Then we
determine the interrupt mode of G15 on falling edge with 15 GPIO_INTR_POSEDGE
gpio_set_intr_type drop .

Testing the encoding
This part of code is not to be used in a final assembly. It is only used to check that the
encoder is correctly connected and working properly:

: test (--)
 cr ." PIN: "
 cr ." - G15: " 15 digitalRead .
 cr ." - G04: " 04 digitalRead .
 ;

pinsInit \ initialise G4 and G15
' test 15 pinchange

It is the 'test 15 pinchange' sequence which tells ESP32Forth to execute the test
code if an interrupt is triggered by action of terminal G15.

Result of the action on our encoder. We only kept the results of actions arriving at the
stop, once counterclockwise, then clockwise:

PIN:
 - G15: 1 \ reverse clockwise turn
 - G04: 1
PIN:
 - G15: 0 \ clockwise turn
 - G04: 1

Increment and decrement a variable with the encoder
Now that we have tested the encoder by hardware interrupt, we will be able to manage
the content of a variable. To do this, we define our variable KYvar and the words allowing
us to modify its content:

0 value KYvar \ content is incremented or decremented

\ increment content of KYvar
: incKYvar (n --)
 1 +to KYvar
 ;

\ decrement content of KYvar
: decKYvar (n --)
 -1 +to KYvar
 ;

Page 161

The word incKYvar increments the content of Kyvar . The word decKYvar decrements
the content of KYvar .

We test the modification of the content of the variable KYvar via this word testIncDec
defined as follows:

\ used by interruption when G15 activated
: testIncDec (--)
 intG15disable
 15 digitalRead if
 04 digitalRead if
 decKYvar
 else
 incKYvar
 then
 cr ." KYvar: " KYvar .
 then
 1000 0 do loop \ small wait loop
 intG15enable
 ;

pinsInit
' testIncDec 15 pinchange

Turning the encoder control to the right (clockwise) will increment the contents of the
KYvar variable. A rotation to the left decrements the content of the KYvar variable:

pinsInit
' testIncDec 15 pinchange
-->
KYvar: 1\rotate Clockwise
KYvar: 2
KYvar: 3
KYvar: 4
KYvar: 3 \ rotate Contra Clockwise
KYvar: 2
KYvar: 1
KYvar: 0
KYvar: -1
KYvar: -2

Page 162

Flashing of an LED per timer

Getting started with FORTH programming
Any beginner in programming knows this more than classic example very well: the
flashing of an LED. Here is the source code, in C language for ESP32 :

/*
 * This ESP32 code is created by esp32io.com
 * This ESP32 code is released in the public domain
 * For more detail (instruction and wiring diagram),
 * visit https://esp32io.com/tutorials/esp32-led-blink
 */

// the code in setup function runs only one time when ESP32 starts
void setup() {
 // initialize digital pin GIOP18 as an output.
 pinMode(18, OUTPUT);
}

// the code in loop function is executed repeatedly infinitely
void loop() {
 digitalWrite(18, HIGH); // turn the LED on
 delay(500); // wait for 500 milliseconds
 digitalWrite(18, LOW); // turn the LED off
 delay(500); // wait for 500 milliseconds
}

In FORTH language, it's not much different :

18 constant myLED

: led.blink (--)
 myLED output pinMode
 begin
 HIGH myLED pin
 500 ms
 LOW myLED pin
 500 ms
 key? until
 ;

If you compile this FORTH code with ESP32forth installed on your ESP32 board and type
led.blink from the terminal, the LED connected to the GPIO18 port will blink.

To inject code written in C language, it will be necessary to compile it on the PC, then
upload it to the ESP32 card, operations which take some time. Whereas with the FORTH
language, the compiler is already operational on our ESP32 board. The compiler will
compile the program written in FORTH language in two to three seconds and allow its
immediate execution by simply typing the word containing this code, here led.blink for
our example.

Page 163

In FORTH language, we can compile hundreds of words and test them immediately, all
individually, which is not possible at all in the C language.

We factor our FORTH code like this :

18 constant myLED

: led.on (--)
 HIGH myLED pin
 ;

: led.off (--)
 LOW myLED pin
 ;

: waiting (--)
 500 ms
 ;

: led.blink (--)
 myLED output pinMode
 begin
 led.on waiting
 led.off waiting
 key? until
 ;

From the terminal, we can simply turn the LED on by typing led.on and turn it off by
typing led.off . Execution of led.blink remains possible.

The aim of factorization is to divide a complex and difficult to read function into a set of
simpler and more readable functions. With FORTH, factorization is recommended, on the
one hand to allow easier debugging, and on the other hand to allow the reuse of factored
words.

These explanations may seem trivial to those who know and master the FORTH language.
This is far from obvious for people programming in C, who are forced to group function
calls into the general loop() function .

Now that this is explained, we will forget everything ! Because...

Flashing by TIMER
We will forget everything that was explained previously. Because this LED blinking
example has a huge downside. Our program does just that and nothing else. In short, it's
a real waste of hardware and software to flash an LED on our ESP32 card. We will see a
very different way of producing this flashing, in FORTH language exclusively.

ESP32forth has two words that will be very useful to manage this LED flashing: interval
and rerun .

Page 164

But before discussing how these two words work, let's take a look at the notion of
interruption...

Hardware and software interrupts
If you plan to manage microcontrollers without worrying about hardware or software
interrupts, then abandon computer development for ESP32 boards!

You have the right to start and not experience interruptions. And we're going to explain
interrupts to you and how to use timer interrupts.

Here is a non-computer example of what an interrupt is:

 you are expecting an important package;

 you go down to the gate of your home every minute to see if the postman has
arrived.

In this scenario, you actually spend your time going down, looking, back up. In fact, you
hardly have time to do anything else...

In reality, this is what should happen :

 you stay in your home ;

 the postman arrives and rings the doorbell ;

 you go down and collect your package...

A microcontroller, which includes the ESP32 card, has two types of interrupts :

 hardware interrupts : they are triggered by a physical action on one of the GPIO
inputs of the ESP32 card ;

 software interrupts : they are triggered if certain registers reach pre-defined
values.

This is the case for timer interrupts, which we will define as software interrupts.

Use the words interval and rerun
The word interval is defined in the timers vocabulary . It accepts three
parameters :

 xt which executes the code for the word to be thrown when the interrupt is
triggered ;

 usec is the wait time, in microseconds, before triggering the interrupt ;

Page 165

 t is the number of the timer to trigger. This parameter must be in the range [0..3]

Let's partially take the factored code of our LED flashing :

18 constant myLED

0 value LED_STATE

: led.on (--)
 HIGH dup myLED pin
 to LED_STATE
 ;

: led.off (--)
 LOW dup myLED pin
 to LED_STATE
 ;

timers \ select timers vocabulary
: led.toggle (--)
 LED_STATE if
 led.off
 else
 led.on
 then
 0 rerun
 ;

' led.toggle 500000 0 interval

: led.blink
 myLED output pinMode
 led.toggle
 ;

The word rerun is preceded by the number of timer activated before the definition of
interval . The word rerun must be used in the definition of the word executed by the
timer.

The word led.blink initializes the GPIO output used by the LED, then executes
led.toggle.

In this sequence FORTH ' led.toggle 500000 0 interval , we initialize timer 0 by
recovering the execution code of the word using rerun , followed by the time interval,
here 500 milliseconds, then the number of the timer to trigger.

The LED flashing starts immediately after execution of the word led.blink .

The FORTH interpreter of ESP32forth remains accessible while the LED flashes, something
impossible in C language!

Page 166

Housekeeper timer

Preamble
It's 1990. He's a computer programmer who works a lot. So he sometimes leaves his
office a little late.

And it was during one of his late
exits from the office that he
entered the corridor, one of those
corridors with a timer button at
each end. The light is already on.
But out of reflex, our programmer
friend presses the switch and pricks
his finger. A wooden point is
inserted into the switch to block the
timer.

It's the cleaning lady who is
cleaning the floor who explains to him: "yes. The timer only lasts one minute. And I often
find myself in the dark. As I'm tired of pressing again without stop on the timer switch, I
block the button with this little wooden point"…

A solution
This anecdote sparked an idea in our programmer’s head. As he had some knowledge
about microcontrollers, he set out to find a solution for the cleaning lady.

History does not say in what language he programmed his solution. Certainly in
assembler.

He derived the control of the lights to his circuit :

 an ordinary press starts the timer for one minute ;

 if the light is on, any brief press of a button reduces the ignition delay to one
minute ;

 our programmer's secret is to have planned a long press of 3 seconds or more. This
long press starts the timer for 10 minutes of lighting ;

 if the timer is in long circuit, another long press reduces the timer delay to one
minute ;

Page 167

 a short beep acknowledges the activation or deactivation of a long timer cycle.

The cleaning lady really appreciated this improvement in the timer. She no longer needed
to block the button in any way.

What about the other workers? Since no one was aware of this feature, they continued to
use the timer by briefly pressing the activation switch.

A FORTH timer for ESP32Forth
You understand, we are going to use timers to manage a timer by integrating the
scenario described previously.

\ myLIGHTS connecté à GPIO18
18 constant myLIGHTS

\ définit temps max pour cycle normal ou étendu, en secondes
 60 constant MAX_LIGHT_TIME_NORMAL_CYCLE
600 constant MAX_LIGHT_TIME_EXXTENDED_CYCLE

\ temps max pour cycle normal ou étendu, en secondes
0 value MAX_LIGHT_TIME

timers
\ coupe éclairage si MAX_LIGHT_TIME égal 0
: cycle.stop (--)
 -1 +to MAX_LIGHT_TIME \ décrémente temps max de 1 seconde
 MAX_LIGHT_TIME 0 = if
 LOW myLIGHTS pin \ coupe éclairage
 else
 0 rerun
 then
 ;

\ initialise timer 0
' cycle.stop 1000000 0 interval

\ démarre un cycle d’éclairage, n est délai en secondes
: cycle.start (n --)
 1+ to MAX_LIGHT_TIME \ sélect. Temps max
 myLIGHTS output pinMode
 HIGH myLIGHTS pin \ active éclairage
 0 rerun
 ;

We can already test our timer :

 3 cycle.start \ turns on lights for 3 seconds
10 cycle.start \ turns on lights for 10 seconds

If we restart cycle.start while the light is on, we start again for a new lighting cycle of
n seconds.

We therefore still have to manage the activation of these cycles from a switch.

Page 168

Management of the light on button
This is not rocket science. We will manage a push button. As we have an ESP32 card on
hand, programmable with ESP32Forth, we will take advantage of it to manage this button
by interrupts. The interrupts managing the GPIO terminals on the ESP32 board are
hardware interrupts.

Our button is mounted on the GPIO17 (G17) terminal.

We define two words, intPosEdge and intNegEdge , which determine the type of
triggering of the interrupt:

 intPosEdge to trigger the interrupt on rising edge;

 intNegEdge to trigger the interrupt on falling edge.

17 constant button \ mount button on GPIO17

interrupts \ select interrupts vocabulary

\ interrupt activated for upraising signal
: intPosEdge (--)
 button #GPIO_INTR_POSEDGE gpio_set_intr_type drop
 ;

\ interrupt activated for falldown signal
: intNegEdge (--)
 button #GPIO_INTR_NEGEDGE gpio_set_intr_type drop
 ;

We then need to define some variables and constants:

 two constants, CYCLE_SHORT and CYCLE_LONG which will be used to define the
duration of lighting of the lights. Here we chose 3 and 10 seconds to do our tests ;

 the msTicksPositiveEdge variable which stores the position of the wait
counter delivered by ms-ticks ;

 DELAY_LIMIT constant which determines the threshold for determining a short or
long press on the push button. Here, it's 3000 milliseconds, or 3 seconds. A normal
user will NEVER press the light on button for 3 seconds. Only the cleaning lady
knows the maneuver to have a long continuous lighting...

03 constant CYCLE_SHORT \ lighting duration for short press, in
seconds
10 constant CYCLE_LONG \ lighting duration for long press

\ stores value of ms-ticks on rising edge
variable msTicksPositiveEdge

\ deadline limit: if delay < DELAY_LIMIT, short cycle
3000 constant DELAY_LIMIT

Page 169

The word getButton is launched at each interrupt triggered by pressing the push button
connected to GPIO17 (G17) on our ESP32 board.

getButton execution , interrupts on G17 are disabled. This interruption will be
reactivated at the end of the definition. This disabling is necessary to prevent interrupt
stacking.

Disabling is followed by the 70000 0 do loop . This loop is used to manage contact
bounces. Here we manage the debounce by software.

\ word executed by interrupt
: getButton (--)
 button gpio_intr_disable drop
 70000 0 do loop \ anti rebond
 button digitalRead 1 =
 if
 ms-ticks msTicksPositiveEdge !
 intNegEdge
 else
 intPosEdge
 ms-ticks msTicksPositiveEdge @ -
 DELAY_LIMIT >
 if CYCLE_LONG cr ." BEEP"
 else CYCLE_SHORT cr ." ----"
 then
 cycle.start
 button gpio_intr_enable drop
 ;

On the rising edge, the word getButton records the state of the delay counter and
positions the interrupts on the falling edge. Then we leave this word by reactivating the
interruptions.

At the falling edge, the word getButton calculates the time elapsed since the rising edge.
If this delay is greater than DELAY_LIMIT , a long ignition cycle is initiated. Otherwise, a
short ignition cycle is initiated.

The engagement of a long ignition cycle is indicated by the display of “BEEP” on the
terminal.

In the original scenario, this is materialized by a short beep.

Finally, we initialize the button and the hardware interrupt on this button:

\ initialize button and interrupt vectors
button input pinMode \ selects G17 in input mode
button gpio_pulldown_en drop \ activates internal resistance of G17
' getButton button pinchange
intPosEdge

forth

Page 170

Conclusion

Watch the assembly video: https://www.youtube.com/watch?v=OHWMh_bIWz0

This very simple case study shows how to simultaneously manage the timer and a
hardware interrupt.

These two mechanisms are very little preemptive. The timer leaves access to the FORTH
interpreter available. The hardware interrupt is operational even if FORTH is running
another process.

We don't multitask. It’s important to say it!

I only hope that this textbook case will now give you a lot of ideas for your
developments...

Page 171

https://www.youtube.com/watch?v=OHWMh_bIWz0

Software real-time clock

The word MS-TICKS
The word MS-TICKS is used in the definition of the word ms :

DEFINED? ms-ticks [IF]
 : ms (n --)
 ms-ticks >r
 begin
 pause ms-ticks r@ - over
 >= until
 rdrop drop
 ;
[THEN]

This word MS-TICKS is at the heart of our investigations. If we start up the ESP32 card,
its execution restores the number of milliseconds elapsed since the ESP32 card was
started up. This value is still growing. The saturation value of this count is 2 32 -1, or
4294967295 milliseconds, or approximately 49 days...

Each time the ESP32 card is restarted, this value restarts from zero.

Managing a software clock
From the HH MM SS (Hours, minutes, seconds) data, it is easy to reconstruct an integer
value, in milliseconds, corresponding to the time elapsed since 00:00:00. If we subtract
the value of MS-TICKS from this time , we have a starting time value to determine the
real time . We therefore initialize a basic counter currentTime from the word RTC.set-
time :

0 value currentTime

\ store current time
: RTC.set-time { hh mm ss -- }
 hh 3600 *
 mm 60 *
 ss + + 1000 *
 MS-TICKS - to currentTime
 ;

Initialization example: 22 52 00 RTC.set-time initializes the time base for 22:52:00...

To properly initialize, prepare the three values HH MM SS followed by the word RTC.set-
time, watch your watch. When the expected time arrives, execute the initialization
sequence.

HH MM and SS values of the current time, using this word :

Page 172

\ get current time in seconds
: RTC.get-time (-- hh mm ss)
 currentTime MS-TICKS + 1000 /
 3600 /mod swap 60 /mod swap
 ;

Finally, we define the word RTC.display-time which allows you to display the current
time after initialization of our software clock:

\ used for SS and MM part of time display
: :## (n -- n')
 # 6 base ! # decimal [char] : hold
 ;

\ display current time
: RTC.display-time (--)
 currentTime MS-TICKS + 1000 /
 <# :## :## 24 MOD #S #> type
 ;

The next step would be to connect to a time server, with the NTP protocol, to
automatically initialize our software clock.

Page 173

Measuring the execution time of a FORTH word

Measuring the performance of FORTH definitions
Let's start by defining the word measure: which will perform these execution time
measurements:

: measure: (exec: -- <word>)
 ms-ticks >r
 ' execute
 ms-ticks r> -
 cr ." execution time: "
 <# # # # [char] . hold #s #> type ." sec." cr
 ;

In this word, we retrieve the time by ms-ticks , then we retrieve the execution code of
the word that follows measure:, we execute this word, we retrieve the new time value
by ms-ticks . We make the difference, which corresponds to the elapsed time, in
milliseconds, taken by the word to execute. Example :

measure: words
\ displays: execution time: 0.210sec.

The word words was executed in 0.2 seconds. This time does not take into account
transmission delays by the terminal. This time also does not take into account the delay
taken by measure: to retrieve the execution code of the word to be measured.

If there are parameters to pass to the word to measure, these must be stacked before
calling measure: followed by the word to measure:

: SQUARE (n -- n-exp2)
 dup *
 ;
3 measure: SQUARE
\ poster:
\ execution time: 0.000sec.

This result means that our SQUARE definition runs in less than a millisecond.

We will repeat this operation a certain number of times:

: test-square (--)
 1000 for
 3 SQUARE drop
 next
 ;
3 measure: test-square
3 measure: test-square
\ poster:
\ execution time: 0.001sec.

Page 174

By executing the word SQUARE 1000 times , preceded by a stacking of values and
unstacking of the result, we arrive at an execution time of 1 millisecond. We can
reasonably deduce that SQUARE executes in less than a micro-second!

Testing a few loops
We are going to test a few loops, with 1 million iterations. Let's start with a do-loop :

: test-loop (--)
 1000000 0 do
 loop
 ;
measure: test-loop
\ display:
\ execution time: 1.327sec.

Now let's see with a for-next loop :

: test-for (--)
 1000000 for
 next
 ;
measure: test-for
\ displays:
\ execution time: 0.096sec.

The for-next loop runs almost 14 times faster than the do-loop.

Let's see what a begin-until loop has in store:

: test-begin (--)
 1000000 begin
 1- dup 0=
 until
 ;
measure: test-begin
\ displays:
\ execution time: 0.273sec.

This is more efficient than the do-loop , but still three times slower than the for-next
loop .

You are now equipped to create even more efficient FORTH programs.

Page 175

Program a sunshine analyzer

Preamble
As part of a solar project using several solar panels and their microinverter, there appear
some problems with managing the electrical energy produced.

The main concern is to activate large consumer devices only if the solar panels produce in
full sun. One device in particular is concerned, the hot water cumulus:

 activate the device when the panels are in direct sunlight;

 deactivate the device when clouds pass.

Microinverters inject power into the general electrical grid. If a device that consumes a lot
of electricity is active when clouds pass, this device will be powered primarily by the
general network.

In this article, we present a solution enabling cloud detection using a miniature solar panel
and an ESP32 card.

Full code available here:
https://github.com/MPETREMANN11/ESP32forth/blob/main/ADC/solarLightAnalyzer.txt

The miniature solar panel
To create our cloud detector, we will use a very small solar panel, here a 25mm x 25mm
panel.

Recovery of a miniature solar panel
This miniature solar panel is recovered from a garden lamp that is out of order :

Page 176

https://github.com/MPETREMANN11/ESP32forth/blob/main/ADC/solarLightAnalyzer.txt

Here is our mini solar panel taken out of this garden lamp :

We sacrifice two dupont connectors to allow various measurements to be carried out on
our prototype plate. These connectors are soldered onto the two red and blue wires
coming out of the mini solar panel.

Measurement of solar panel voltage
We start by measuring the no-load voltage of our mini solar panel, here with an
oscilloscope. This voltage measurement can also be carried out with a voltmeter :

Page 177

In bright light, the measured voltage amounts to 14.2 Volts!

Under diffused light, the voltage drops to 5.8 Volts.

By covering the mini solar panel with your hand, the voltage drops to almost 0 Volts.

Solar panel current measurement
The current, i.e. the intensity, must be measured using an ammeter. The ammeter
function of a universal controller will be suitable. Short-circuiting the mini solar panel in
bright light allows a current of 10 mA to be measured.

Our mini solar panel therefore has an approximate power of 0.2 Watt.

Before connecting our mini solar panel to the ESP32 card, it is essential to lower the
output voltage. It is out of the question to inject this voltage of 14.2 Volts into an input of
the ESP32 card. Such voltage would destroy the internal circuitry of the ESP32 board.

Lowering the solar panel voltage

Page 178

The idea is to lower the voltage across our mini solar panel. After a few tests, we choose
two resistors, one of 220 Ohms, the other of 1K Ohms. Mounting these resistors:

The voltage measurement is taken between the two resistors and the positive terminal of
the solar panel.

The voltmeter now indicates a maximum voltage of 3.2V in bright light, a voltage of 0.35V
in diffused light.

Programming the solar analyzer
The ESP32 board has 18 12-bit channels enabling analog-to-digital conversion (ADC). To
analyze the voltage of our mini solar panel, a single ADC channel is necessary and
sufficient.

Only 15 ADC channels are available:

Page 179

We will use one, the ADC1_CH6 channel which is attached to pin G34 :

34 constant SOLAR_CELL

: init-solar-cell (--)
 SOLAR_CELL input pinMode
 ;

init-solar-cell

To read the voltage at the point between the two resistors, simply run SOLAR_CELL
analogRead . This sequence drops a value between 0 and 4095. The lowest value
corresponds to zero voltage. The highest value corresponds to a voltage of 3.3 Volts.

solar-cell-read definition to recover this voltage:

: solar-cell-read (-- n)
 SOLAR_CELL analogRead
 ;

Let's test this definition in a loop :

: solar-cell-loop (--)
 init-solar-cell
 begin
 solar-cell-read cr .
 200 ms
 key? until
 ;

When running solar-cell-loop , every 200 milliseconds, the ADC voltage conversion
value is displayed:

...
322
331
290
172
39
0
0
0
0
19
79
86
...

Here the values were obtained by illuminating the mini solar panel with a high power
lamp. Zero values correspond to the absence of lighting.

Tests with the real sun show measurements exceeding 300.

Page 180

Managing activation and deactivation of a device
To begin, we will define two pins, one pin reserved for managing an activation signal, the
other for a deactivation signal:

 G17 pin connected to a green LED. This pin is used to activate a device.

 G16 pin connected to a red LED. This pin is used to deactivate a device.

17 constant DEVICE_ON \ green LED
16 constant DEVICE_OFF \ red LED

: init-device-state (--)
 DEVICE_ON output pinMode
 DEVICE_OFF output pinMode
 ;

We could have used a single pin to manage the remote device. But some devices, like
bistable relays, have two coils :

 the first coil is powered so that the contacts switch. The state does not change
when the coil is no longer energized ;

 to return to the initial state, the second coil is powered.

For this reason, our programming will take this type of device into account.

\ define trigger high state delay
500 value DEVICE_DELAY

\ set HIGH level of trigger
: device-activation { trigger -- }
 trigger HIGH digitalWrite
 DEVICE_DELAY ?dup
 if
 ms
 trigger LOW digitalWrite
 then
 ;

Here, the pseudo-constant DEVICE_DELAY is used to indicate the delay during which the
control signal should be kept high. After this time, the control signal returns to the low
state.

If the value of DEVICE_DELAY is zero, the control signal remains high.

It is the word trigger-activation which manages the activation of the corresponding
pin:

 TRIGGER_ON trigger-activation permanently or transiently sets the pin
attached to the green LED high;

Page 181

 TRIGGER_OFF trigger-activation sets the pin attached to the red LED
permanently or transiently high.

We now define two words, device-ON and device-OFF , respectively responsible for
activating and deactivating the device intended to be controlled by pins G16 and G17:

\ define device state: 0=LOW, -1=HIGH
0 value DEVICE_STATE

: enable-device (--)
 DEVICE_STATE invert
 if
 DEVICE_OFF LOW digitalWrite
 DEVICE_ON device-activation
 -1 to DEVICE_STATE
 then
 ;

: disable-device (--)
 DEVICE_STATE
 if
 DEVICE_ON LOW digitalWrite
 DEVICE_OFF device-activation
 0 to DEVICE_STATE
 then
 ;

The device state is stored in DEVICE_STATE . This state is tested before attempting to
change state. If the device is active, it will not be reactivated repeatedly. Same if the
device is inactive.

\ define trigger value for sunny or cloudy sky
300 value SOLAR_TRIGGER

\ if solar light > SOLAR_TRIGGER, activate action
: action-light-level (--)
 solar-cell-read SOLAR_TRIGGER >=
 if
 enable-device
 else
 disable-device
 then
 ;

Triggered by timer interrupt
The most elegant way is to use a timer interrupt. We will use timer 0:

 0 to DEVICE_DELAY
200 to SOLAR_TRIGGER
init-solar-cell
init-device-state

timers
: action (--)
 action-light-level
 0 rerun

Page 182

 ;

' action 1000000 0 interval

From now on, the timer will analyze the light flow every second and act accordingly. Link
to video: https://youtu.be/lAjeev2u9fc

For this video, we act on two parameters:

 0 to DEVICE_DELAY lights the LEDs permanently. The red LED indicates that the
device is deactivated. The green LED indicates device activation;

 200 to SOLAR_TRIGGER determines the threshold for triggering the sunshine
state. This parameter is adjustable to adapt to the characteristics of the mini solar
panel.

The action word works by timer interrupt. It is therefore not necessary to have a
general loop for the detector to work.

Devices controlled by the sunshine sensor
In summary, we have two control wires, one wire corresponding to the green LED in the
video, the other wire corresponding to the red LED. The program is designed so that both
control wires cannot be active at the same time.

To have a continuous signal on either control wire, the DEVICE_DELAY value only
needs to be zero. Here is how to initialize this scenario :

\ start with Constant Command Signal
: start-CCS (--)
 0 to DEVICE_DELAY
 200 to SOLAR_TRIGGER
 init-solar-cell
 init-device-state
 disable-device
 [timers] ['] action 1000000 0 interval
 ;

And to have timed commands, we will assign to DEVICE_DELAY the delay of the level of
the activation or deactivation command of the device.

\ start with Temporized Command Signal
: start-TCS (--)
 300 to DEVICE_DELAY
 200 to SOLAR_TRIGGER
 init-solar-cell
 init-device-state
 disable-device
 [timers] ['] action 1000000 0 interval
 ;

Page 183

https://youtu.be/lAjeev2u9fc

start-TCS scenario is typical of a pulse-operated bistable relay control. The relay
activates if it receives an activation command. Even if the activation signal falls, the
bistable relay remains active. To deactivate the bistable relay, a deactivation command
must be transmitted to it on the deactivation line.

In conclusion, our solar light analyzer can control a wide variety of devices. It is enough to
adapt the control interfaces of these devices to the characteristics of the GPIO ports of the
ESP32 card.

Page 184

Management of N/A (Digital/Analog) outputs

Digital/analog conversion
The conversion of a digital quantity into an electrical voltage proportional to this digital
quantity is a very interesting functionality on a micro-controller.

When you use the Internet and make a VOIP phone call, your voice is transformed into
numerical values. That of your correspondent will be inversely transformed from numbers
to sound signals. This process uses analog to digital conversion and vice versa.

D/A conversion with R2R circuit
Here is the basic diagram of a 4-bit digital to analog converter :

The value to convert, on 4 bits, is distributed over 4 pins a0 to a3. The reference voltage
is injected at the top left of the circuit. This voltage generates an intensity 2I if this current
does not pass through any resistance.

Depending on the activated bits, for each bit the voltage is divided and added to that of
the other active bits. For example, if a2 and a0 are active, the output current Is will be the
sum I/2 and I/8.

For this 4-bit circuit, the conversion step is I/16. With ESP32, the conversion is done on 8
bits. The conversion step will therefore be I/256.

D/A conversion with ESP32
No ARDUINO board has a D/A conversion output. To perform a D/A conversion with an
ARDUINO board, you must use an external component.

Page 185

With the ESP32 card, we have two pins, G25 and G26, corresponding to D/A conversion
outputs.

For our first D/A conversion experiment with the ESP32 board, we will connect two LEDs
to pins G25 and G26:

\ define Gx to LEDs
25 constant ledBLUE \ blue led on G25
26 constant ledWHITE \ white led on G26

Before performing a D/A conversion, we plan to initialize pins G25 and G26:

\ init Gx as output
: initLeds (--)
 ledBLUE output pinMode
 ledWHITE output pinMode
 ;

And we define two words allowing us to control the intensity of our two LEDs:

\ set intensity for BLUE led
: BLset (val --)
 ledBLUE swap dacWrite
 ;

\ set intensity for WHITE led
: WHset (val --)
 ledWHITE swap dacWrite
 ;

The words BLset and WHset accept as parameters a numeric value in the range 0..255.

In the photo, after initLeds , the sequence 200 BLset lights the blue LED at reduced
power.

To turn it on at full power, we will use the sequence 255 BLset

To turn it off completely, we will send this sequence 0 BLset

Page 186

Possibilities of D/A conversion
Here, with our two LEDs, we have created a simple and uninteresting assembly.

This montage has the merit of showing that the D/A conversion works perfectly. The D/A
conversion allows:

 power control through a dedicated circuit, a variator for an electric motor for
example;

 generation of signals: sinusoid, square, triangle, etc...

 sound file conversion

 sound synthesis...

Full code available here:
https://github.com/MPETREMANN11/ESP32forth/blob/main/DAC/DAoutput.txt

Page 187

https://github.com/MPETREMANN11/ESP32forth/blob/main/DAC/DAoutput.txt

Installing the OLED library for SSD1306
Since ESP32forth version 7.0.7.15, the options are available in the optional folder :

To have the oled vocabulary, copy the oled.h file to the folder containing the
ESP32forth.ino file.

Then launch ARDUINO IDE and select the most recent ESP32forth.ino file.

If the OLED library has not been installed, in ARDUINO IDE, click Sketch and select
Include Library, then select Manage Libraries.

Page 188

In the left sidebar, look for the Adafruit SSD1306 by Adafruit library.

You can now start compiling the sketch by clicking on Sketch and selecting Upload.

Once the sketch is uploaded to the ESP32 board, launch the TeraTerm terminal. Check
that the OLED vocabulary is present :

oled vlist \ display:
OledInit SSD1306_SWITCHCAPVCC SSD1306_EXTERNALVCC WHITE BLACK OledReset
HEIGHT WIDTH OledAddr OledNew OledDelete OledBegin OledHOME OledCLS
OledTextc
OledPrintln OledNumln OledNum OledDisplay OledPrint OledInvert OledTextsize
OledSetCursor OledPixel OledDrawL OledCirc OledCircF OledRect OledRectF
OledRectR OledRectRF oled-builtins

Page 189

The I2C interface on ESP32

Introduction
I2C (means: Inter-Integrated Circuit, in English) is a computer bus which emerged from
the “war of standards” launched by players in the electronic world. Designed by Philips for
home automation and domestic electronics applications, it makes it possible to easily
connect a microprocessor and various circuits, notably those of a modern television:
remote control receiver, low frequency amplifier settings, tuner, clock, management of
scart socket, etc.

There are countless peripherals using this bus, it can even be implemented by software in
any microcontroller. The weight of the consumer electronics industry has enabled very low
prices thanks to these numerous components.

This bus is sometimes called TWI (Two Wire Interface) or TWSI (Two Wire Serial
Interface) by certain manufacturers.

Exchanges always take place between a single master and one (or all) slave(s), always at
the initiative of the master (never from master to master or from slave to slave). However,
nothing prevents a component from going from master to slave status and vice versa.

principle of an I2C bus

The connection is made via two lines:

 SDA (Serial Data Line): bidirectional data line,

 SCL (Serial Clock Line): bidirectional synchronization clock line.

We must not forget the mass which must be common to the equipment.

Both lines are pulled at voltage level VDD through pull-up resistors (RP).

Page 190

OLED display connected to the I2C bus

Master slave exchange
The message can be broken down into two parts:

 The master is the transmitter, the slave is the receiver:

◦ emission of a START condition by the master (“S”),

◦ transmission of the address byte or bytes by the master to designate a slave,
with the R/W bit at 0 (see the section on addressing below),

◦ response from the slave with an ACK acknowledgment bit (or NACK non-
acknowledgement bit),

◦ after each acknowledgment, the slave can request a pause (“PA”).

◦ emission of a command byte by the master for the slave,

◦ response from the slave with an ACK acknowledgment bit (or NACK non-
acknowledgement bit),

◦ emission of a RESTART condition by the master (“RS”),

◦ transmission of the address byte or bytes by the master to designate the same
slave, with the R/W bit at 1.

◦ response from the slave with an ACK acknowledgment bit (or NACK non-
acknowledgement bit).

 The master becomes a receiver, the slave becomes a transmitter:

◦ emission of a data byte by the slave for the master,

◦ response from the master with an ACK acknowledgment bit (or NACK non-
acknowledgement bit),

Page 191

◦ transmission of other data bytes by the slave with acknowledgment from the
master,

◦ for the last byte of data expected by the master, it responds with a NACK to end
the dialogue,

◦ emission of a STOP condition by the master (“P”).

Start condition : The SDA line goes from a high voltage level to a low voltage level
before the SCL line goes from high to low.

Shutdown condition : The SDA line changes from a low voltage level to a high voltage
level after the SCL line changes from low to high.

Address frame : a unique 7 or 10 bit sequence for each slave that identifies the slave
when the master wants to talk to it.

Read/Write Bit : A single bit specifying whether the master is sending data to the slave
(low voltage level) or requesting data from it (high voltage level).

ACK/NACK bit : each frame of a message is followed by an acknowledgment/non-
acknowledgment bit. If an address frame or data frame has been successfully received, an
ACK bit is returned to the sender.

Addressing
I2C doesn't have slave select lines like SPI, so it needs another way to let the slave know
that data is being sent to it, and not another slave. It does this by addressing. The
address frame is always the first frame after the start bit in a new message.

The master sends the address of the slave with which it wants to communicate to each
slave connected to it. Each slave then compares the address sent by the master to its
own. If the address matches, it returns a low voltage ACK bit to the master. If the address
does not match, the slave does nothing and the SDA line remains high.

This is how the Wire.detect word detects devices connected to the i2c bus.

You can connect several different devices to the i2c bus. You cannot connect several
copies of the same device to the same i2c bus.

Page 192

Setting GPIO ports for I2C
Setting up the GPIO ports for the I2C bus is very simple:

\activate the wire vocabulary
wire
\ start the I2C interface using pin 21 and 22 on ESP32 DEVKIT V1
\ with 21 used as sda and 22 as scl.
21 22 wire.begin

I2C bus protocols
The dialogue is only between a master and a slave. This dialogue is always initiated by the
master (Start condition): the master sends the address of the slave with whom it wants to
communicate on the I2C bus.

The dialogue is always terminated by the master (Stop condition).

The clock signal (SCL) is generated by the master.

Detecting an I2C device
This part is used to detect the presence of a device connected to the I2C bus.

You can compile this code to test for the presence of connected and active modules on
the I2C bus.

\ activates wire vocabulary
wire
\ starts I2C interface using pin 21 and 22 on ESP32 DEVKIT V1
\ with 21 for sda and 22 for scl.
21 22 wire.begin

: spaces (n --)

 for

 space

 next

 ;

: .## (n --)

 <# # # #> type

 ;

\ not all bitpatterns are valid 7bit i2c addresses
: Wire.7bitaddr? (a -- f)

 dup $07 >=

 swap $77 <= and

 ;

Page 193

: Wire.detect (--)

 base @ >r hex

 cr

 ." 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f"

 $80 $00 do

 i $0f and 0=

 if

 cr i .## ." : "

 then

 i Wire.7bitaddr? if

 i Wire.beginTransmission

 -1 Wire.endTransmission 0 =

 if

 i .## space

 else

 ." -- "

 then

 else

 2 spaces

 then

 loop

 cr r> base !

 ;

Here, running the word Wire.detect indicates the presence of the OLED display device
at hexadecimal address 3c:

Wire.detect

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 : -- -- -- -- -- -- -- -- --

10 : -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20 : -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30 : -- -- -- -- -- -- -- -- -- -- -- -- 3c -- -- --

40 : -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50 : -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60 : -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70 : -- -- -- -- -- -- -- --

Here we detected a module at hexadecimal address 3c. This is the address that we will
use to address this module….. @TODO: to be completed

Page 194

The SSD1306 OLED display
The OLED display exists in two definitions:

 128 x 64 pixels, monochrome or colored screen. If the screen is colored, the pixels
remain monochrome.

 128 x 32 pixels, monochrome screen.

These displays are available in SPI or I2C interface.

Favor the I2C interface which allows the connection of several I2C interfaces on the same
I2C device. The OLED vocabulary is designed to manage transmission via I2C to these
OLED displays.

Choosing a display interface

The choice of a display interface is subject to several conditions:

 his price;

 its electricity consumption;

 its robustness;

 its ease of programming and use.

A display interface is very useful on a
stand-alone setup to provide very clear
textual or graphic information.

After several researches, the choice fell on
an OLED display of this type,

It only costs a few euros.

This display uses OLED technology,
therefore without backlighting.

Page 195

Its display resolution is 128x32 pixels. It can display text and images, but only in
monochrome.

In DISPLAYOFF mode , power consumption is almost zero.

It is a very widespread and rather well documented product.

Online documentation

 Adafruit: OLED display technical documentation and controls
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf

 Adafruit: SSD1306 C library
https://adafruit.github.io/Adafruit_SSD1306/html/files.html

 Adafruit: SSD1306 microPython
https://github.com/adafruit/micropython-adafruit-ssd1306

 Punyforth: SSD1306 SPI Forth
https://github.com/zeroflag/punyforth/blob/master/arch/esp8266/forth/ssd1306-
spi.forth

 TG9541: Forth Oled Display
https://github.com/TG9541/forth-oled-display/blob/master/ssd1306.fs

 Yunfan: SSD1306 128x32 i2c forth
https://gist.github.com/yunfan/2d3ee14697f3ebd3cb43ae411216d9aa

Connecting the SSD1306 OLED display
The SSD1306 128x32 OLED display must be used on the I2C bus of the ESP32 card.

This I2C bus is present on all ESP32 boards.

Connection to an ESP32 card:

Page 196

https://gist.github.com/yunfan/2d3ee14697f3ebd3cb43ae411216d9aa
https://github.com/TG9541/forth-oled-display/blob/master/ssd1306.fs
https://github.com/zeroflag/punyforth/blob/master/arch/esp8266/forth/ssd1306-spi.forth
https://github.com/zeroflag/punyforth/blob/master/arch/esp8266/forth/ssd1306-spi.forth
https://github.com/adafruit/micropython-adafruit-ssd1306
https://adafruit.github.io/Adafruit_SSD1306/html/files.html
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf

connection of the SSD1306 I2C OLED display

As we can see, 4 wires are enough: 2 for powering the SSD1306 OLED display (black and
red wires), 2 for the connection to the I2C bus (blue and yellow wires).

The display power supply is taken from the ESP32 card. There is no need to use an
auxiliary power supply. The very low power consumption of this display allows this. The
SSD1306 OLED display has an integrated circuit bringing back the 5V voltage necessary
for its operation.

Memory organization

The SSD1306 128x32 display screen uses the same internal component as the SSD1306
128x64 display. The internal memory is common to both models, the 128x32 display
screen only uses part of this memory.

The display's internal memory has 1KB RAM.

In this diagram, here is the organization of the screen for a definition of 128x64 pixels:

Each column contains 8 bits. One line is designated per page:

 the 128x64 display: contains 8 pages, numbered from 0 to 7

 the 128x32 display: contains 4 pages, numbered from 0 to 3

Page 197

Each page is divided into segments:

Here, in blue in the figure, a segment represents a byte. The least significant bit is on top.

We do not need to go further to manage this display with the oled vocabulary.

Organize the SSD1306 project

Before getting to the heart of the matter, let's see how we are going to organize our
project. On your computer, create a working folder named display . In this folder, create
a subfolder SSD1306 .

We will fully exploit managing SPIFFS files and building our FORTH code in a real project.

Create the autoexec.fs file

In your workspace, therefore on your computer, in the SSD1306 subfolder, create the
autoexec.fs file and copy this FORTH code into it:

create crlf 13 C, 10 C,
: RECORDFILE ("filename" "filecontents" "<EOF>" --)
 bl parse
 W/O CREATE-FILE throw >R
 BEGIN
 tib #tib accept
 tib over
 S" <EOF>" startswith?
 DUP IF
 swap drop
 ELSE
 swap
 tib swap
 R@ WRITE-FILE throw
 crlf 1+ 1 R@ WRITE-FILE throw
 THEN
 UNTIL
 R> CLOSE-FILE throw
 ;
: MAIN
 s" /spiffs/main.fs" included
 ;

Next, open the terminal that communicates with ESP32forth, then run visual edit :

visual edit /spiffs/autoexec.fs

Page 198

And copy the contents of autoexec.fs described above. At the end of editing with the
terminal, type CTRL-S and CTRL-X and Y. Relaunch ESP32forth with bye . You must find
the words RECORDFILE and MAIN by typing words :

OK

--> words

MAIN RECORDFILE crlf FORTH spi oled telnetd registers webui login web-interface

httpd ok LED OUTPUT INPUT HIGH LOW tone freq duty adc pin default-key?

default-key default-type visual set-title page at-xy normal bg fg ansi

These manipulations will offer us some facilities which we will now detail.

Creating the main.fs file

SSD1306 subfolder , create the main.fs file and copy this FORTH code into it :

RECORDFILE /spiffs/main.fs

DEFINED? --oledTest [if] forget --oledTest [then]

create --oledTest

s" /spiffs/config.fs" included

s" /spiffs/oledTools.fs" included

<EOF>

Copy this code again, launch the terminal which communicates with the ESP32 and
ESP32forth board. Copy this code into the terminal. Run it. At the end of execution, you
should find your main.fs file on the ESP32 card :

--> ls /spiffs/
autoexec.fs
main.fs

To verify that the contents of main.fs have been saved in the SPIFFS file system :

cat /spiffs/main.fs

should display the contents of the /spiffs/main.fs file .

Creating the config.fs file

SSD1306 subfolder , create the config.fs file and copy this FORTH code into it :

RECORDFILE /spiffs/config.fs
\ set oled SSD1306 dimensions
oled
128 to WIDTH
 32 to HEIGHT
forth
\ set adress of OLED SSD1306 display 128x32 pixels
$3c constant I2C_SSD1306_ADDRESS
<EOF>

As with main.fs , pass this content through the terminal to save the new config.fs file .

Page 199

Creating the oledTools.fs file

For now, here is our final oledTools.fs file to create on the computer and transmit to the
ESP32 board:

RECORDFILE /spiffs/oledTools.fs
oled
: Oled128x32Init
 OledAddr @ 0=
 if
 WIDTH HEIGHT OledReset OledNew
 SSD1306_SWITCHCAPVCC I2C_SSD1306_ADDRESS OledBegin drop
 then
 OledCLS
 1 OledTextsize \ Draw 2x Scale Text
 WHITE OledTextc \ Draw white text
 0 0 OledSetCursor \ Start at top-left corner
 z" *Esp32forth*" OledPrintln OledDisplay
 ;
forth
<EOF>

Test our SSD1306 project

Here is the structure of our project on our computer
disk.

All fs extension files were passed to the ESP32 board
to be saved on the SPIFFS file system.

To compile the contents of the /SPIFFS/config.fs file,
you can test this from the terminal window which
communicates with ESP32forth:

include /spiffs/config.fs

If you never modify the contents of the config.fs file , it will always be available to
ESP32forth as soon as the ESP32 board is powered on.

Remember we also passed in a main.fs file ? The content of this file must be reserved
for calling the different project files. Reminder of the contents of our main.fs file as it is
recorded on the ESP32 card in the SPIFFS file system:

DEFINED? --oledTest [if] forget --oledTest [then]
create --oledTest

s" /spiffs/config.fs" included
s" /spiffs/oledTools.fs" included

The first two lines allow you to manage a marker. Each time the content of main.fs is
interpreted , ESP32forth will test if there is an --oledTest word . If this word exists, it
will be deleted from the dictionary. All words compiled after --oledTest will be removed
from the dictionary.

Page 200

In the second line, we recreate the word --oledTest . It's not surprising to remove this
word and recreate it. In this way, each time the content of main.fs is interpreted , the
dictionary of ESP32forth restarts with content that will not disrupt our project.

Finally, in the last two lines of main.fs , ESP32forth is asked to process the contents of
the config.fs and oledTools.fs files . So, to launch this global processing, we can type:

include /spiffs/main.fs

When you have a complex project, you may have to type this treatment dozens, or even
hundreds of times. Do you remember that in the autoexec.fs file we defined the word
MAIN ? Reminder of the definition of this word:

: MAIN
 s" /spiffs/main.fs" included
 ;

Very good ! So we can just type MAIN instead of doing include /spiffs/main.fs…

Shall we take the test? OK. Power off the ESP32 board. Turn it back on. Open the terminal
that communicates with ESP32forth and type MAIN. All project content is executed and
compiled almost instantly! Type words . All the words in our project are in the forth
vocabulary.

We check that it works by now typing:

Oled128x32Init

If the SSD1306 128x32 pixel OLED display is properly connected, it should display
Esp32forth :

result of executing the word Oled128x32Init

From this moment, we can write and realize all the other words of our project.

Use OLED vocabulary

The words that we will use to use our SSD1306 128x32 OLED display are available in the
oled vocabulary:

--> oled vlist

Page 201

OledInit SSD1306_SWITCHCAPVCC SSD1306_EXTERNALVCC WHITE BLACK OledReset

HEIGHT WIDTH OledAddr OledNew OledDelete OledBegin OledHOME OledCLS OledTextc

OledPrintln OledNumln OledNum OledDisplay OledPrint OledInvert OledTextsize

OledSetCursor OledPixel OledDrawL OledFastHLine OledFastVLine OledCirc

OledCircF OledRect OledRectF OledRectR OledRectRF oled-builtins

Initializing the I2C bus for the SSD1306 OLED display

Our OLED display is wired to the I2C bus. It is therefore available at hexadecimal address
3c on this I2C bus. The first thing to do is therefore to define a constant:

\ set address of OLED SSD1306 display 128x32 pixels
$3c constant I2C_SSD1306_ADDRESS

In the oled vocabulary, there is an OledAddr variable responsible for memorizing this 3c
address. If this address contains a zero value, it is because the I2C bus has not
established a connection with our SSD1306 display. It is this null value which conditions
the initialization of this connection:

 OledAddr @ 0=
 if
 \ init I2C communication with SSD1306
 then

Here is the initialization part of our communication via the I2C bus to the SSD1306 OLED
display:

WIDTH HEIGHT OledReset OledNew
SSD1306_SWITCHCAPVCC I2C_SSD1306_ADDRESS OledBegin drop

 WIDTH HEIGHT OledReset OledNew sequence instantiates a new OLED session
for our SSD1306 display;

 the word OledBegin will be preceded by two parameters:

◦ SSD1306_SWITCHCAPVCC which confirms the 3.3V supply from the ESP32 card,
which is the case in our assembly. If we had used an external power supply, we
replace this word with SSD1306_EXTERNALVCC .

◦ I2C_SSD1306_ADDRESS which indicates the address of the OLED display on the
I2C bus.

This initialization of the I2C bus is only carried out once for our SSD1306 OLED display.

Initializing the display for SSD1306

To start a display, we will initialize the display:

 OledCLS which requests deletion of the screen content;

 1 OledTextsize which indicates the size of the text to display;

 WHITE OledTextc which indicates the color of the text to display. For the SSD1306
display, there are only WHITE and BLACK colors .

Page 202

Here is the word Oled128x32Init allowing proper initialization:

oled
: Oled128x32Init
 OledAddr @ 0=
 if
 WIDTH HEIGHT OledReset OledNew
 SSD1306_SWITCHCAPVCC I2C_SSD1306_ADDRESS OledBegin drop
 then
 OledCLS
 1 OledTextsize \ Draw 1x Scale Text
 WHITE OledTextc \ Draw white text
 0 0 OledSetCursor \ Start at top-left corner
 z" *Esp32forth*" OledPrintln OledDisplay
 ;
forth

Running Oled128x32Init should display the text *Esp32forth* on the OLED screen.

Here is a summary of the text display management commands for the OLED display:

 OledCLS (--)
Clears the contents of the OLED screen

 OledDisplay (--)
transmits to the OLED display the commands awaiting display

 OledHOME (--)
Positions the cursor in row 0, column 0 on the OLED display. This position is pixel-
perfect.

 OledInvert (--)
Inverts the OLED screen display

 OledNum (n --)
Displays the number n as a string on the OLED screen

 OledNumln (n --)
Displays an integer on the OLED display and moves to the next line

 OledPrint (z-string --)
Displays z-string text on the OLED screen

 OledPrintln (z-string --)
Prints z-string text on the OLED screen and moves to the next line

 OledTextc (WHITE|BLACK --)
Sets the color of the text to display

 OledSetCursor (xy --)
Sets the cursor position

 OledTextsize (size --)
Sets the size of text to display on the OLED screen. The value of n must be in the

Page 203

interval [1..3]. For normal sized text, size=1. If you exceed the value 4, the text will
be truncated on a 4-line display.

And here is a summary of the graphic display management commands:

 OledCirc (xy radius color --)
Draws a circle centered at xy, with radius radius and color color (0|1)

 OledCircF (xy radius color --)
Draws a full circle centered at xy, with radius radius and color color (0|1)

 OledDrawL (x0 y0 x1 y1 color --)
Draws a line from x0 y0 to x1 y1 of color color.

 OledFastHLine (xy length color --)
Draws a horizontal line from xy of dimension length and color color.

 OledFastVLine (xy length color --)
Draws a vertical line from xy of dimension length and color color.

 OledPixel (xy color)
Activates a pixel at position x y. The color parameter determines the color of the
pixel.

 OledRect (xy width height color --)
Draws an empty rectangle from the xy position of size width height and color color.

 OledRectF (xy width height color --)
Draws a solid rectangle from the xy position of size width height and color color.

 OledRectR (xy width height radius color --)
Draws an empty rectangle with rounded corners, from the xy position, of dimension
width heigh, in the color color, with a radius radius.

 OledRectRF (xy width height radius color --)
Traces a solid rectangle with rounded corners, from the xy position, of dimension
width heigh, in the color color, with a radius radius.

Page 204

The OLED display allows text and graphics management words to be executed in the same
display mode. In short, you can mix text and graphics.

Expand the oled vocabulary

After a few crashes, I discovered that you cannot define an OledTriangle extension like
this in C language to extend the definitions in the oled.h file :

YV(oled, OledTriangle, oled_display->drawTriangle(n5, n4, n3, n2, n1, n0); DROPn(6)) \

but that's without taking into account that we program in FORTH language and that with
this language we can extend our oled vocabulary. We will therefore create a new file on
our computer, in our project directory, with the file name extendOledVoc.fs . Content :

RECORDFILE /spiffs/extendOledVoc.fs
oled definitions
: OledTriangle { x0 y0 x1 y1 x2 y2 color -- }
 x0 y0 x1 y1 color OledDrawL
 x1 y1 x2 y2 color OledDrawL
 x2 y2 x0 y0 color OledDrawL
 ;
forth definitions
<EOF>

Then we copy and paste this code and transmit it to ESP32forth via the terminal which
communicates with the ESP32 card. We should end up with an extendOledVoc.fs file in
the SPIFFS memory space. We now modify the contents of the main.fs file :

s" /spiffs/config.fs" included
s" /spiffs/extendOledVoc.fs" included

s" /spiffs/oledTools.fs" included

We unplug and reconnect the ESP32 card. We type
MAIN in the terminal. If everything went well, you
should find the word OledTriangle by simply typing
oled vlist .

Test of our new word OledTriangle :

oled
OledCLS OledDisplay
5 5 60 8 40 30 WHITE OledTriangle OledDisplay

Page 205

TEMPVS FVGIT8

What if the Romans had been able to program the display of time in digital form ?

This is an interesting project that combines several files. In this chapter, we are not going
to give all of the code used here. It would be too long.

The source codes for this chapter are in this file:

 ESP32forth-book.zip → projects → tempusFugit

Link: https://github.com/MPETREMANN11/ESP32forth/blob/main/__documentation/
ESP32forth-book.zip

The entire project contains these files:

 autoexec.fs content loaded when ESP32fortth starts

 clepsydra.fs converting numbers to roman numerals

 config.fs global configuration settings

 main.fs main file loading the other project files

 oledTools.fs completes the oled vocabulary

 RTClock.fs manages the real-time clock

 strings.fs handles processing of alphanumeric strings

The sequence of loading project files is written in main.fs :

s" /spiffs/strings.fs" included

s" /spiffs/RTClock.fs" included

s" /spiffs/clepsydra.fs" included

s" /spiffs/config.fs" included

s" /spiffs/oledTools.fs" included

Most files in this project are independent, except for clepsydra.fs which is dependent on
strings.fs .

Romani non ustulo nulla9

The Romans did not know the number 0. So how can we display 13:00 or 00:15 in
Roman numerals?

To solve the problem of hours after midnight, for example
00:15, the Japanese (residents of JAPAN) will be of great

8 Tempus fugit = time passes
9 Romani non ustulo nulla = The Romans did not know zero

Page 206

https://github.com/MPETREMANN11/ESP32forth/blob/main/__documentation/ESP32forth-book.zip
https://github.com/MPETREMANN11/ESP32forth/blob/main/__documentation/ESP32forth-book.zip

help to us. If you ever go to this country, you will be amazed to see shops open until
25:00 !

This store is open from 09:00 to 25:00! Oh yes. However, JAPAN's clocks are also 24
hours. We knew the Japanese were hardworking, but to the point of working 25-hour
days, we have the right to have some doubts...

In fact, there is a very logical explanation. After 12:00, it is 12:01, etc... And so, after
23:59, it is 24:00, then 24:01. So, if a store closes at 25:00, we must understand that it
closes at 01:00 for us.

If we transpose this onto our Roman clock, when it is 00:00 , we will be able to display
XXIV or better XXIII:LX (23:60).

Romani horas et minuta10

To resolve the case of hours like 01:00, 02:00... 23:00, logically, after 12:59, we can very
well display 12:60, then the minute after 13:01.. 12:60 in Roman numerals: XXII:LX .

This is what is achieved in the word tempusTo$:

: tempusTo$ { HH MM -- }

 HH 0 = MM 0= AND if

 60 to MM

 23 to HH

 THEN

 HH 0 > MM 0= AND if

 60 to MM

 -1 +to HH

 then

 HH 0 <= if

 24 to HH

 then

 HH roman tempus $!

 [char] : tempus c+$! \ add char :

 MM roman tempus append$

 tempus

 ;

In the first if..then test, we test if we are at 00:00 . In this case, we force the hour to 23
and the minutes to 60 .

In the second test, if the hour is greater than 00 and the minutes are greater than 00, we
decrement the hour and force the minutes to 60 . The disadvantage is that if the time is
00, we change it to -1.

In the last test, if the hour is zero or negative, we force it to 24 .

10 Romani horas et minuta = Roman hours and minutes

Page 207

We can use the word .tempus which was used for the development to check this correct
operation :

--> 23 59 .tempus

XXIII:LIX ok

--> 0 0 .tempus

XXIII:LX ok

--> 0 1 .tempus

XXIV:I ok

--> 1 0 .tempus

XXIV:LX ok

--> 1 1 .tempus

I:I ok

Haec omnia integramus pro ESP32forth11

In the current state of the project, you must manually enter the initial time:

22 19 start

Means that we initialize the time at 22:19 . This initialization is carried out very simply:

0 RTC.setTime

Then we initialize the 128x32 OLED display:

Oled128x32Init
1 OledTextsize
WHITE OledTextc

And finally, we will retrieve the current time and display it :

OledCLS OledDisplay

16 20 OledSetCursor

RTC.getTime drop tempusTo$ s>z OledPrintln OledDisplay

I did tests with a larger display. The problem, for the channel XXIII:XXVIII , there is not
enough space to display this channel.

Here is the final loop to run to start displaying the time in Roman numerals:

oled

: start (HH MM --)

 0 RTC.setTime \ define current time

 Oled128x32Init

 1 OledTextsize

 WHITE OledTextc

 begin

 OledCLS OledDisplay

 16 20 OledSetCursor

 RTC.getTime drop tempusTo$ s>z OledPrintln OledDisplay

 1000 ms

11 Haec omnia integramus pro ESP32forth = We integrate all this for ESP32forth

Page 208

 key? until

 ;

forth

The program can be improved by
retrieving the time from a time
server. See chapter Retrieving the
time from a WEB server .

Using timers words to free the
interpreter. See chapter Flashing an
LED by timer .

Finally, assembling the different files for this project and the few tests and adjustments
took me an afternoon.

However, I would like to emphasize a few points:

 Always make a copy in your project folder of a general purpose file. For example,
for the strings.fs file ;

 If you copy a general component, for example strings.fs or RTClock.fs , only
make changes to those files copied to your project folder. Version these
modifications and indicate the modification date in the head comment of the
modified file.

As you carry out your projects, you may find yourself with the same file copied to different
folders and modified. This solution is preferable to a single file full of adjustment
parameters.

Page 209

Add the SPI library
The SPI library is not natively implemented in ESP32forth. To install it, you must first
create the spi.h file which must be installed in the same folder as that containing the
ESP42forth.ino file.

Content of the spi.h file (in C language) :
include <SPI.h>

#define OPTIONAL_SPI_VOCABULARY V(spi)

#define OPTIONAL_SPI_SUPPORT \

 XV(internals, "spi-source", SPI_SOURCE, \

 PUSH spi_source; PUSH sizeof(spi_source) - 1) \

 XV(spi, "SPI.begin", SPI_BEGIN, SPI.begin((int8_t) n3, (int8_t) n2, (int8_t) n1, (int8_t) n0); DROPn(4)) \

 XV(spi, "SPI.end", SPI_END, SPI.end();) \

 XV(spi, "SPI.setHwCs", SPI_SETHWCS, SPI.setHwCs((boolean) n0); DROP) \

 XV(spi, "SPI.setBitOrder", SPI_SETBITORDER, SPI.setBitOrder((uint8_t) n0); DROP) \

 XV(spi, "SPI.setDataMode", SPI_SETDATAMODE, SPI.setDataMode((uint8_t) n0); DROP) \

 XV(spi, "SPI.setFrequency", SPI_SETFREQUENCY, SPI.setFrequency((uint32_t) n0); DROP) \

 XV(spi, "SPI.setClockDivider", SPI_SETCLOCKDIVIDER, SPI.setClockDivider((uint32_t) n0); DROP) \

 XV(spi, "SPI.getClockDivider", SPI_GETCLOCKDIVIDER, PUSH SPI.getClockDivider();) \

 XV(spi, "SPI.transfer", SPI_TRANSFER, SPI.transfer((uint8_t *) n1, (uint32_t) n0); DROPn(2)) \

 XV(spi, "SPI.transfer8", SPI_TRANSFER_8, PUSH (uint8_t) SPI.transfer((uint8_t) n0); NIP) \

 XV(spi, "SPI.transfer16", SPI_TRANSFER_16, PUSH (uint16_t) SPI.transfer16((uint16_t) n0); NIP) \

 XV(spi, "SPI.transfer32", SPI_TRANSFER_32, PUSH (uint32_t) SPI.transfer32((uint32_t) n0); NIP) \

 XV(spi, "SPI.transferBytes", SPI_TRANSFER_BYTES, SPI.transferBytes((const uint8_t *) n2, (uint8_t *) n1, (uint32_t) n0);
DROPn(3)) \

 XV(spi, "SPI.transferBits", SPI_TRANSFER_BITES, SPI.transferBits((uint32_t) n2, (uint32_t *) n1, (uint8_t) n0); DROPn(3)) \

 XV(spi, "SPI.write", SPI_WRITE, SPI.write((uint8_t) n0); DROP) \

 XV(spi, "SPI.write16", SPI_WRITE16, SPI.write16((uint16_t) n0); DROP) \

 XV(spi, "SPI.write32", SPI_WRITE32, SPI.write32((uint32_t) n0); DROP) \

 XV(spi, "SPI.writeBytes", SPI_WRITE_BYTES, SPI.writeBytes((const uint8_t *) n1, (uint32_t) n0); DROPn(2)) \

 XV(spi, "SPI.writePixels", SPI_WRITE_PIXELS, SPI.writePixels((const void *) n1, (uint32_t) n0); DROPn(2)) \

 XV(spi, "SPI.writePattern", SPI_WRITE_PATTERN, SPI.writePattern((const uint8_t *) n2, (uint8_t) n1, (uint32_t) n0);
DROPn(3))

const char spi_source[] = R"""(

vocabulary spi spi definitions

transfer spi-builtins

forth definitions

)""";

The full file is also available here:
https://github.com/MPETREMANN11/ESP32forth/blob/main/optional/spi.h

Changes to the ESP32forth.ino file

spi.h file cannot be integrated into ESP32forth without making some changes to the
ESP32forth.ino file. Here are the few modifications to be made to this file. These
changes were made on version 7.0.7.15, but should be applicable to other recent or future
versions.

First modification

Code added in red :

#define VOCABULARY_LIST \
 V(forth) V(internals) \

Page 210

https://github.com/MPETREMANN11/ESP32forth/blob/main/optional/spi.h

 V(rtos) V(SPIFFS) V(serial) V(SD) V(SD_MMC) V(ESP) \
 V(ledc) V(Wire) V(WiFi) V(sockets) \
 OPTIONAL_CAMERA_VOCABULARY \
 OPTIONAL_BLUETOOTH_VOCABULARY \
 OPTIONAL_INTERRUPTS_VOCABULARIES \
 OPTIONAL_OLED_VOCABULARY \
 OPTIONAL_SPI_VOCABULARY \

 OPTIONAL_RMT_VOCABULARY \
 OPTIONAL_SPI_FLASH_VOCABULARY \
 USER_VOCABULARIES

Second modification

Addition in red after this code :

// Hook to pull in optional Oled support.
if __has_include("oled.h")
include "oled.h"
else
define OPTIONAL_OLED_VOCABULARY
define OPTIONAL_OLED_SUPPORT
endif

// Hook to pull in optional SPI support.

if __has_include("spi.h")

include "spi.h"

else

define OPTIONAL_SPI_VOCABULARY

define OPTIONAL_SPI_SUPPORT

endif

Third modification

Added in red :

#define EXTERNAL_OPTIONAL_MODULE_SUPPORT \
 OPTIONAL_ASSEMBLERS_SUPPORT \
 OPTIONAL_CAMERA_SUPPORT \
 OPTIONAL_INTERRUPTS_SUPPORT \
 OPTIONAL_OLED_SUPPORT \
 OPTIONAL_SPI_SUPPORT \

 OPTIONAL_RMT_SUPPORT \
 OPTIONAL_SERIAL_BLUETOOTH_SUPPORT \
 OPTIONAL_SPI_FLASH_SUPPORT

Fourth modification

Addition in red :

internals DEFINED? oled-source [IF]
 oled-source evaluate
[THEN] forth

internals DEFINED? spi-source [IF]

 spi-source evaluate

[THEN] forth

Page 211

If you follow these instructions carefully, you will be able to compile ESP32forth with
ARDUINO IDE and upload it to the ESP32 board. Once these operations are done, launch
the terminal. You need to find the ESP32forth welcome prompt. Type :

spinnaker vlist

You must find the words defined in this spi vocabulary :

SPI.begin SPI.end SPI.setHwCs SPI.setBitOrder SPI.setDataMode SPI.setFrequency

SPI.setClockDivider SPI.getClockDivider SPI.transfer SPI.transfer8 SPI.transfer16

SPI.transfer32 SPI.transferBytes SPI.transferBits SPI.write SPI.write16

SPI.write32 SPI.writeBytes SPI.writePixels SPI.writePattern spi-builtins

You can now drive extensions via the SPI port, such as the MAX7219 LED displays.

Communicate with the MAX7219 display module
In SPI communication, there is always a master who controls the peripherals (also called
slaves). Data can be sent and received simultaneously. This means that the master can
send data to a slave and a slave can send data to the master at the same time.

You can have several slaves. A slave can be a sensor, display, microSD card, etc., or
another microcontroller. This means you can have your ESP32 connected to multiple
devices .

A slave is selected by setting the CS1 or CS2 selector to low level. It will take as many CS
selectors as there are slaves to manage.

Page 212

Locating the SPI port on the ESP32 board
There are two SPI ports on an ESP32 board: HSPI and VSPI. The SPI port that we will
manage is the one whose pins are prefixed VSPI:

With ESP32forth, we can therefore define the constants pointing to these VSPI pins:

\ define VSPI pins
19 constant VSPI_MISO
23 constant VSPI_MOSI
18 constant VSPI_SCLK
05 constant VSPI_CS

To communicate to the MAX7219 display module, we will only need to wire the
VSPI_MOSI, VSPI_SCLK and VSPI_CS pins.

SPI connectors on the MAX7219 display module
Here is the SPI port connector map on the MAX7219 module:

Connection between the MAX7219 module and the ESP32 card:

 MAX7219 ESP32
 DIN <----> VSPI_MOSI
 CS <----> VSPI_CS
 CLK <----> VSPI_SCLK

The VCC and GND connectors are connected to an external power supply:

Page 213

The GND part of this external power supply is shared with the GND pin of the ESP32 card.

SPI port software layer
All the words for managing the SPI port are already available in the spi vocabulary .

The only thing to define is the initialization of the SPI port:

\ define SPI port frequency
4000000 constant SPI_FREQ

\ select SPI vocabulary
only FORTH SPI also

\ initialize SPI port
: init.VSPI (--)
 VSPI_CS OUTPUT pinMode
 VSPI_SCLK VSPI_MISO VSPI_MOSI VSPI_CS SPI.begin
 SPI_FREQ SPI.setFrequency
 ;

We are now ready to use our MAX7219 display module.

Page 214

Installing the HTTP client

Editing the ESP32forth.ino file
ESP32Forth is provided as a source file, written in C language. This file must be compiled
using ARDUINO IDE or any other C compiler compatible with the ARDUINO development
environment.

Here are the portions of code to modify. First portion to modify:

#define ENABLE_SD_SUPPORT
#define ENABLE_SPI_FLASH_SUPPORT
#define ENABLE_HTTP_SUPPORT

// #define ENABLE_HTTPS_SUPPORT

Second portion to modify:

//
#define VOCABULARY_LIST \
 V(forth) V(internals) \
 V(rtos) V(SPIFFS) V(serial) V(SD) V(SD_MMC) V(ESP) \
 V(ledc) V(http) V(Wire) V(WiFi) V(bluetooth) V(sockets) V(oled) \
 V(rmt) V(interrupts) V(spi_flash) V(camera) V(timers)

Third portion to modify :

 OPTIONAL_RMT_SUPPORT \
 OPTIONAL_OLED_SUPPORT \
 OPTIONAL_SPI_FLASH_SUPPORT \
 OPTIONAL_HTTP_SUPPORT \

 FLOATING_POINT_LIST

#ifndef ENABLE_HTTP_SUPPORT

define OPTIONAL_HTTP_SUPPORT

#else

include <HTTPClient.h>

 HTTPClient http;

define OPTIONAL_HTTP_SUPPORT \

 XV(http, "HTTP.begin", HTTP_BEGIN, tos = http.begin(c0)) \

 XV(http, "HTTP.doGet", HTTP_DOGET, PUSH http.GET()) \

 XV(http, "HTTP.getPayload", HTTP_GETPL, String s = http.getString(); \

 memcpy((void *) n1, (void *) s.c_str(), n0); DROPn(2)) \

 XV(http, "HTTP.end", HTTP_END, http.end())

 #endif

Fourth portion to modify :

vocabulary ledc ledc definitions

Page 215

transfer ledc-builtins
forth definitions

vocabulary http http definitions

transfer http-builtins

forth definitions

vocabulary Serial Serial definitions
transfer Serial-builtins
forth definitions

Once the ESP32forth.ino file is modified, you compile it and upload it to the ESP32
board. If everything went correctly, you should have a new http vocabulary :

ttp
vlist \ displays :
HTTP.begin HTTP.doGet HTTP.getPayload HTTP.end http-builtins

HTTP Client Testing
To test our HTTP client, we can do it by querying any web server. But for what we are
considering later, you need to have a personal web server. On this server, we create a
subdomain:

 our server is arduino-forth.com

 ws subdomain

 we access this subdomain with the URL http://ws.arduino-forth.com

This subdomain being created, it does not contain any script to execute. We create the
index.php page and put this code there:

It's OK

To check that our subdomain is functional, simply query it from our favorite web browser:

Page 216

http://ws.arduino-forth.com/

If everything goes as planned, we should have the text It's OK displayed in our favorite
web browser. Let's now see how to perform this same server query from ESP32Forth...

Here is the FORTH code written quickly to perform the HTTP client test:

WiFi

\ connection to local WiFi LAN
: myWiFiConnect
 z" mySSID"
 z" myWiFiCode"
 login
 ;

Forth

create httpBuffer 700 allot
 httpBuffer 700 erase

HTTP

: run
 cr
 z" http://ws.arduino-forth.com/" HTTP.begin
 if
 HTTP.doGet dup ." Get results: " . cr 0 >
 if
 httpBuffer 700 HTTP.getPayload
 httpBuffer z>s dup . cr type
 then
 then
 HTTP.end
 ;

We activate the Wifi connection by executing myWiFiConnect then run :

--> myWiFiConnect
192.168.1.23
MDNS started
 ok
--> run

Get results: 200
8
It's OK
 ok

Our HTTP client queried the web server perfectly, displaying the same text as that
retrieved from our web browser.

This small successful test opens the way to enormous possibilities.

Page 217

Retrieve the time from a WEB server
Software real-time clock chapter , we looked at how to manage a real-time clock using the
properties of the timer.

However, the initialization of this real time clock must be done manually. Now that we
have a way to communicate with a web server, we will see how to perform this
initialization through a web server.

Transmission and reception of time from a web server
For the server part, we create a new gettime.php script whose content is as follows:

<?php
echo date('H i s')." RTC.set-time";

If we run this script http://ws.arduino-forth.com/gettime.php , on a web browser, this is
what is displayed:

15 25 30 RTC.set-time

We prepared the work so that the ESP32Forth interpreter only has this line to execute.
Here is the FORTH code to retrieve the time:

WiFi
\ connection to local WiFi LAN
: myWiFiConnect
 z" mySSID"
 z" myWiFiCode"
 login
 ;

Forth

0 value currentTime

\ store current time
: RTC.set-time { hh mm ss -- }
 hh 3600 *
 mm 60 *
 ss + + 1000 *
 MS-TICKS - to currentTime
 ;

\ used for SS and MM part of time display
: :## (n -- n')
 # 6 base ! # decimal [char] : hold
 ;

\ display current time
: RTC.display-time (--)
 currentTime MS-TICKS + 1000 /
 <# :## :## 24 mod #S #> type

Page 218

http://ws.arduino-forth.com/gettime.php

 ;

700 constant bufferSize
create httpBuffer
 bufferSize allot

0 buffer 700 erase

HTTP

: getTime
 cr
 z" http://ws.arduino-forth.com/gettime.php" HTTP.begin
 if
 HTTP.doGet
 if
 httpBuffer bufferSize HTTP.getPayload
 httpBuffer z>s evaluate
 then
 then
 HTTP.end
 ;

myWiFiConnect
getTime
RTC.display-time

In the word getTime, this sequence httpBuffer z>s evaluate retrieves the contents
of the web transaction buffer and evaluates its contents. This is possible because the web
server transmitted a sequence compatible with our FORTH interpreter. Running the last
three lines of this code displays this :

--> myWiFiConnect
192.168.1.23
MDNS started
 ok
--> getTime
 ok
--> RTC.display-time
15:33:09 ok

This initialization can be performed only once, generally when starting ESP32Forth. This
technique of querying our own web server avoids negotiating with a time server.

Most time servers deliver information in formats that are difficult to process by FORTH:
csv, JSON, XML, etc.

Page 219

Understanding transmission by GET to a WEB server

Transmission of data to a server by GET
There are two methods of transmitting data from a web page to a web server :

POST which is the method generally used from forms

GET which is the method we are going to study

There are other methods, but these are generally reserved for machine-to-machine
transactions through web services.

Parameters in a URL
Let's start by explaining what a URL is: http://my-website.com/ (URL for example).

We analyze a URL starting from the end:

 .com is the TLD (Top-Level Domain)

 my-website is the domain name

 http:/// is the communication protocol.

We are not going to do an exhaustive course on these elements. The only thing there is to
know comes now.

This URL can be followed by the script or the HTML page, example : http://my-
website.com/index.php

We can complete this URL with a parameter pass :

http://my-website.com/index.php?temp=32.7

Here we pass a temp parameter whose value is 32.7 .

Passing parameters using the GET method is marked by the ? sign.

Passing multiple parameters
Several parameters can be transmitted by separating them with the sign & :

http://my-website.com/index.php?log=myLog&pwd=myPassWd&temp=32.7

Here we pass three parameters :

Page 220

http://my-website.com/index.php
http://my-website.com/index.php
http://my-website.com/

• log with myLog value

• pwd with the value myPassWd

• temp with value 32.7

To understand how the server will receive this data, we create a record.php script which
will provisionally simply contain this:

<?php
var_dump($_GET);

and which will display this if we query this script with our favorite web browser:

array(3) {
 ["log"]=>
 string(7) "myLogin"
 ["pwd"]=>
 string(10) "mypassword"
 ["temp"]=>
 string(4) "32.7"
}

That's pretty much all we need to get the data and save it to the server. This is what we
are going to discover...

Managing parameter passing with ESP32forth

To begin, it is necessary to have words to manage character strings. You will find these
words in the Display of numbers and character strings chapter, part Code of words for
managing text variables .

We start by creating a character string :

256 string myUrl
s" http://ws.arduino-forth.com/record.php?log=myLog&pwd=myPassWd&temp=" myUrl $!

We have just defined an alphanumeric variable myUrl . This variable is almost complete.
All that is missing is the value of the temp parameter. To add this value, we will execute
append$:

s" 32.5" myUrl append$
myUrl type
\ display: http://ws.arduino-forth.com/record.php?
log=myLog&pwd=myPassWd&temp=32.5

C'est cet URL que nous allons utiliser dans cette définition :

: sendData (str --)
 s" http://ws.arduino-forth.com/record.php?log=myLog&pwd=myPassWd&temp="

 myUrl $!

 myUrl append$

Page 221

http://ws.arduino-forth.com/record.php?log=myLog&pwd=myPassWd&temp

 \ cr myUrl type
 myUrl s>z HTTP.begin
 if
 HTTP.doGet dup 200 =
 if drop
 httpBuffer bufferSize HTTP.getPayload
 httpBuffer z>s type
 else
 cr ." CNX ERR: " .
 then
 then
 HTTP.end
 ;

myWiFiConnect
s" 32.65" sendData

The word sendData retrieves the contents of the string, here 32.65 , concatenates these
contents to myUrl , then initiates a web client transaction to the server mentioned in
myUrl .

You will notice that in the URL there is a log parameter. This parameter can be different
for each ESP32 card initiating a transaction to the web server. It is possible for ten,
twenty, or even a thousand ESP32 cards to save their data to a single web server.

Page 222

Data transmission to a WEB server

Data recording on the web server side
In the previous chapter Understanding transmission by GET to a WEB server , we
explained how ESP32Forth transmits information to a web server.

Now let's see how, on the server side, we will save the data. Here is a first script, in PHP,
which performs this recording:

<?php
// echo "<pre>"; var_dump($_GET);
$handle = fopen("datasRecords.csv","a");
$myDatas = array(
 'currentDateTime' => date("Y-m-d H:i:s"),
 'currentLogin' => $_GET['log'],
 'currentTemp' => $_GET['temp'],
);
fwrite($handle, implode(';', $myDatas)."
");
fclose($handle);
echo "DATAs recorded";

This script is very simple:

 we open a dataRecords.csv file with fopen .

 we prepare the data to save in a myDatas table

 we save this data with fwrite

 the data is put in csv format using implode

 we close the file with fclose

csv format file is easy to retrieve with a spreadsheet or read with a simple text editor.

Access protection
If you have followed our explanations carefully, you will have noticed that we transmit two
parameters log and pwd . These two parameters first serve as access keys to our data
recording script.

It is this protection that we put in place to prevent any access to the script by an
unauthorized transmitter. Here, we accept two transmitters :

<?php
// echo "<pre>"; var_dump($_GET);
$myAuths = array(

Page 223

 'pooltemp' => 'pool2022',
 'housetemp' => 'house2022',
);

/**
 * Test authorization access
 * @param array $auths
 * @return boolean
 */
function testAuths($auths){
 if(array_key_exists($_GET['log'], $auths) &&
$auths[$_GET['log']]==$_GET['pwd']) {
 return true;
 }
 return false;
}

// Recording datas in CSV file format
if (testAuths($myAuths)) {
 $handle = fopen("datasRecords.csv","a");
 $myDatas = array(
 'currentDateTime' => date("Y-m-d H:i:s"),
 'currentLogin' => $_GET['log'],
 'currentTemp' => $_GET['temp'],
);
 fwrite($handle, implode(';', $myDatas)."
");
 fclose($handle);
 echo "DATAs recorded";
} else {
 echo "AUTH failed";
}

This script serves as an example. It is deliberately simple. On a professional application,
the keys and passwords would be saved in the database.

Here is a transaction that will be executed successfully :

http://ws.arduino-forth.com/record.php?log=polltemp&pwd=pool2022&temp=27.5

log pwd pair whose values are tested and approved by the data recording script.

View recorded data
To access the recorded data, we use an FTP client (Filezilla):

There we find our datasRecords.csv file . Just download it to view its contents with any
text editor :

Page 224

We find, in the last lines, our transmission tests with two different logins. The record.php
script can process transactions with hundreds of different ESP32 cards, each with a
different login.

Add data to transmit
If you manage a DHT11 or DHT22 type sensor (temperature and humidity sensor), you
would be tempted to record the temperature and humidity values in a single transaction.
To do this, nothing could be easier. Here is the aspect of the transaction allowing this:

http://ws.arduino-forth.com/record.php?log=polltemp&pwd=pool2022&temp=27.5&hygr=62.2

But for it to work, you have to act on the PHP script record.php:

<?php
// Recording datas in CSV file format
if (testAuths($myAuths)) {
 $handle = fopen("datasRecords.csv","a");
 $myDatas = array(
 'currentDateTime' => date("Y-m-d H:i:s"),
 'currentLogin' => $_GET['log'],
 'currentTemp' => $_GET['temp'],
 'currentHygr" => $_GET['hygr'],
);
 fwrite($handle, implode(';', $myDatas)."
");
 fclose($handle);
 echo "DATAs recorded";
} else {
 echo "AUTH failed";
}

Here, we simply add a row to the $myDatas table .

On the FORTH side, we will improve URL management :

Page 225

256 string myUrl \ declare string variable

: addTemp (strAddrLen --)
 s" &temp=" myUrl append$
 myUrl append$
 ;

: addHygr (strAddrLen --)
 s" &hygr=" myUrl append$
 myUrl append$
 ;

: sendData (strHygr strTemp --)
 s" http://ws.arduino-forth.com/record.php?log=myLog&pwd=myPassWd"
 myUrl $!
 addTemp
 addHygr
 cr myUrl type
 myUrl s>z HTTP.begin
 if
 HTTP.doGet dup 200 =
 if drop
 httpBuffer bufferSize HTTP.getPayload
 httpBuffer z>s type
 else
 cr ." CNX ERR: " .
 then
 then
 HTTP.end
 ;

\ for test:
myWiFiConnect
s" 64.2" \ hygrometry
s" 31.23" \ temperature
sendData

We added two words, addTemp and addHygr . Each of these words concatenates a
parameter and its value to the URL which will be used for the web transaction between
your ESP32 card and the web server.

There are only two limitations to the number of parameters passed by the GET method:

 the length of our URL as defined in FORTH, here 256 characters. If you want to
increase this limit, simply set our URL with a longer initial length: 512 string
myUrl

 the maximum length of URLs accepted by the HTTP protocol. This length can reach
8000 characters according to recent standards.

Regarding FORTH, we have other limitations. In particular, if we wish to transmit textual
data. certain characters, "&" for example, will need to be encoded. You will have to handle
this encoding in FORTH.

Page 226

Conclusion
QUESTION: What can all this be used for?

An ESP32 card costs less than €/$10 each. Even more like €/$5 if you buy in quantity. If
you integrate a temperature sensor and a relay, you can for example take temperature
readings and transmit commands from the server to activate/deactivate a relay. Managing
the temperature of several rooms becomes very easy. The same goes for managing
intelligent watering in a greenhouse.

You can also monitor access and trigger lights or alarms very easily. Let's take the case of
a portal. You authorize passages between certain times and you lock this same gate
(magnetic suction cup) from the ESP32 card.

We trust your imagination to find practical arrangements exploiting this data transmission
between ESP32 cards and a web server.

AND WHY A WEB SERVER?

With a web server, it is easy to query it from anywhere, with a web browser installed on
your PC, a digital tablet, a smartphone. And a single web server can integrate an indefinite
number of different scripts.

Page 227

Sound synthesis with ESP32Forth
For your first sound experiments, you need to have
a speaker that you connect to a GPIO output. But
the impedance of the speakers being very low, it
will be necessary to go through a transistor. Here is
the recommended diagram for a small speaker.

On this diagram, the GPIO4 pin is mentioned. In
fact, this assembly can be used on any GPIO output
of the ESP32 card. The two outputs that will
particularly interest us are GPIO25 and GPIO26
which are reserved for DAC (Digital to Analog
Conversion) outputs.

Simple sound synthesis
We will use PWM signal generation, but on the DAC outputs.

Our speaker is connected to the GPIO25 output, via the PN2222A transistor which serves
as an impedance adapter.

 0 constant CHANNEL0 \ define PWM channel 0

25 constant BUZZER \ buzzer connected to GPI25

ledc \ select ledc vocabulary

: initTones (--)

 BUZZER CHANNEL0 ledcAttachPin

 ;

The word initTones connects the GPIO25 output to PWM channel 0. Generating a sound
is done like this:

CHANNEL0 freq ledcWriteTone drop

where freq is the desired frequency, multiplied by 1000. Thus, to generate the note LA (A
in English notation), whose frequency is 440 Hz, you will need to use the value 440*1000:

CHANNEL0 440000 ledcWriteTone drop

Definition of sound frequency table
To find the sound frequencies of musical notes, we went to Wikipedia. We construct a
frequency table, where each frequency will be recorded in its form usable by
ledcWriteTone :

\ frequency notes

\ source: https://fr.wikipedia.org/wiki/Note_de_musique

Page 228

Figure 14: branchement d'un haut parleur

\ frequency is multiplied by 1000

create NOTES

\ octave -1

 15350 , 17330 , 18360 , 19450 , 20600 , 21830 ,

 23130 , 24500 , 25960 , 27500 , 29140 , 30870 ,

\ octave 0

 32700 , 34650 , 36710 , 38890 , 41200 , 43650 ,

 46250 , 49000 , 51910 , 55000 , 58270 , 61740 ,

\ octave 1

 65410 , 69300 , 73420 , 77780 , 82410 , 87310 ,

 92500 , 98000 , 103830 , 110000 , 116540 , 123470 ,

\ octave 2

 130810 , 138590 , 146830 , 155560 , 164810 , 174610 ,

 185000 , 196000 , 207650 , 220000 , 233080 , 246940 ,

\ octave 3

 261630 , 277180 , 293660 , 311130 , 329630 , 349230 ,

 369990 , 392000 , 415300 , 440000 , 466160 , 493880 ,

\ octave 4

 523250 , 554370 , 587330 , 622250 , 659260 , 698460 ,

 739990 , 783990 , 830610 , 880000 , 932330 , 987770 ,

\ octave 5

1046500 , 1108730 , 1174660 , 1244510 , 1318510 , 1396910 ,

1479980 , 1567980 , 1661220 , 1760000 , 1864660 , 1975530 ,

\ octave 6

2093000 , 2217460 , 2349320 , 2489020 , 2637020 , 2793830 ,

2959960 , 3135960 , 3322440 , 3520000 , 3729310 , 3951070 ,

\ octave 7

4186010 , 4434920 , 4698640 , 4978030 , 5274040 , 5587650 ,

5919910 , 6271930 , 6644880 , 7040000 , 7458620 , 7902130 ,

\ octave 8

 8372020 , 8869840 , 9397280 , 9956060 , 10548080 , 11175300 ,

11839820 , 12543860 , 13289760 , 14080000 , 14917240 , 15804260 ,

There are twelve notes per octave, hence the definition of 12 values per octave. Here, we
record only 10 lines, or 10 octaves. Because after 15Khz, the sounds would no longer be
audible.

To find a note, you just need to know its position in an octave. For example, our A note in
octave 3 will be: ((octave+1)*12)+position. A being in the 10th position in octave 3, the
address to be determined will be NOTES+4*((OCTAVE+1*12)+position)

Retrieving the frequency of a musical note

We first create a word set.octave which will allow us to select the desired octave. Then,
we define get.note which retrieves the frequency of the desired note:

3 value OCTAVE

\ select octave in interval -1..8

: set.octave (n[-1..8])

Page 229

 to OCTAVE

 ;

\ select note in interval 1..12

: get.note (n[1..12] --)

 1- OCTAVE 1+ 12 * + cell * \ calc. offset in NOTES array

 NOTES + @ \ fetch frequency of selected note

 ;

3 value OCTAVE

\ select octave in interval -1..8

: set.octave (n[-1..8])

 to OCTAVE

 ;

: OCT6 (--) 6 set.octave ;

: OCT5 (--) 5 set.octave ;

: OCT4 (--) 4 set.octave ;

: OCT3 (--) 3 set.octave ;

: OCT2 (--) 2 set.octave ;

: OCT1 (--) 1 set.octave ;

We will see later how to manage notes by calling them from their notation.

Managing note duration
The duration of a note is the time interval between the triggering of two consecutive
notes.

A base delay is defined by the WHOLE-NOTE-DURATION constant .

The durations are defined in a new music vocabulary :

1600 constant WHOLE-NOTE-DURATION

WHOLE-NOTE-DURATION value duration

vocabulary music

music definitions

music also

\ set duration of a whole note

: o (--)

 WHOLE-NOTE-DURATION to duration

 ;

\ set duration of a white note

: o| (--)

 WHOLE-NOTE-DURATION 2/ to duration

 ;

Page 230

\ set duration of a black note

: .| (--)

 WHOLE-NOTE-DURATION 2/ 2/ to duration

 ;

\ set duration of a half black note

: .|' (--)

 WHOLE-NOTE-DURATION 2/ 2/ 2/ to duration

 ;

\ set duration of a quarter black note

: .|" (--)

 WHOLE-NOTE-DURATION 2/ 2/ 2/ 2/ to duration

 ;

We define words which symbolize the desired durations: o for a full note, \o for a half
note, \. for a black note, etc...

One-note support
The sustain of a note is the amount of time the note is audible during its playing time. We
define a sustain value which expresses the percentage of emission sustain of the note
during its total duration. If this value is 100, the notes follow each other without any
silence between the notes.

\ sustain of note, in interval [0..100]

90 value SUSTAIN

ledc

\ sustain note in interval [0..100]

: sustain.note (--)

 duration SUSTAIN 100 */ ms

 CHANNEL0 0 ledcWriteTone drop

 duration 100 SUSTAIN - 100 */ ms

 ;

On a synthesizer, the envelope of a sound is determined by four parts A D S R:

 Attack: marks the start of the sound

 Decay: follows attack, marks the sound crushing which precedes the sustain part

 Sustain: marks the part during which the sound is sustained

 Release: marks the part during which the sound is attenuated

Page 231

In this chapter, the sounds we generate only have a sustain part.

The word sustain.note generates two delays. The first delay corresponds to the
duration of the note maintenance. The second delay corresponds to a silence maintenance
delay. The sum of these two delays always corresponds to the delay defined in duration.

Creating musical notes
We arrive at the most interesting part, defining the notes by their name:

: create-note

 \ compile position in octave

 create (position --)

 ,

 \ get note frequency in current octave

 does>

 @ 1- get.note

 CHANNEL0 swap ledcWriteTone drop

 sustain.note

 ;

\ notes in english notation

 1 create-note C

 2 create-note C#

 3 create-note D

 4 create-note D#

 5 create-note E

 6 create-note F

 7 create-note F#

 8 create-note G

 9 create-note G#

10 create-note A

11 create-note A#

12 create-note B

\ notes in french notation

 1 create-note DO

 2 create-note DO#

 3 create-note RE

 4 create-note RE#

Page 232

 5 create-note MI

 6 create-note FA

 7 create-note FA#

 8 create-note SOL

 9 create-note SOL#

10 create-note LA

11 create-note LA#

12 create-note SI

: SIL (--)

 CHANNEL0 0 ledcWriteTone drop

 duration ms

 ;

forth definitions

In addition to the twelve notes, from DO to SI , we define our SIL which is a silence.

Sound test
We test all the notes, scale by scale:

forth definitions

: music-scale (--)

 C C# D D# E F F# G G# A A# B

 ;

initTones

forth also music also

.|

80 to SUSTAIN

OCT1 music-scale

OCT2 music-scale

OCT3 music-scale

OCT4 music-scale

OCT5 music-scale

OCT6 music-scale

If all goes well, we must unfold all the musical notes, by semitones, from octave 1 to the
highest octave, here 6. We do not define an additional octave. It's doable. But the sounds
emitted enter a limit zone to be audible.

The flight of the bumblebee
This is a first test of transposing a musical score. To do this, we use a particularly difficult
musical piece, THE FLIGHT OF THE BOURDON by Rimsky KORSAKOV . Here is the
first measure of the first line:

Page 233

Here is how we code this first measure, in French notation:

OCT5 MI RE# RE DO# RE DO# DO OCT4 SI

Or in English notation:

OCT5 E D# D C# D C# C OCT4 B

Here is the code for the first line of this partition:

: 1stLine (--)

 .|" (duration of a quarter black note)

 OCT5 MI RE# RE DO# RE DO# DO OCT4 SI

 OCT5 DO OCT4 SI LA# LA SOL# SOL FA# FA

 MI RE# RE DO# RE DO# DO OCT3 SI

 ;

My apologies if I made any mistakes translating the score. At this stage, it is easy to test
this musical line:

: flightBumbleBee (--)

 initTones

 1stLine

 ;

flightBumbleBee

We code two other lines:

: 2ndLine (--)

 .|" (duration of a quarter black note)

 OCT4 DO OCT3 SI FA# FA SOL# SOL FA# FA

 MI RE# RE DO# RE DO DO# OCT2 SI OCT3

 MI RE# RE DO# RE DO DO OCT2 SI OCT3

 MI RE# RE DO# DO FA FA RE#

 ;

: 3rdLine (--)

 .|" (duration of a quarter black note)

 MI RE# RE DO# DO DO# RE RE#

 MI RE# RE DO# DO FA FA RE#

 MI RE# RE DO# DO DO# RE RE#

 MI RE# RE DO# RE DO DO# OCT2 SI OCT3

 ;

: flightBumbleBee (--)

 initTones

Page 234

Figure 15: first measure - The Flight of the
Bumblebee - Rimsky KORSAKOV

 1stLine

 2ndLine

 3rdLine

 ;

flightBumbleBee

We let you code the other three lines of the score.

Page 235

Program in XTENSA assembler

Preamble
For those unfamiliar with assembly language, it is the lowest level layer in programming.
In assembler, we address the processor directly.

It is also a difficult language, not very readable. But on the other hand, the performance is
exceptional.

We program in assembler:

 when there is no other solution to access certain functionalities of a processor;

 to make certain parts of the program faster. Code generated by an assembler is the
fastest!

 for fun. Assembler programming is an intellectual challenge;

 because no evolved language can do everything. Sometimes, you can program
functions in assembly that are too complex to write in another language.

As an example, here is the Huffman decoding code carried out in XTENSA assembler:

/* input in t0, value out in t1, length out in t2 */
 srl t1, t0, 6
 li t3, 3
 beq t3, t4, 2f
 li t2, 2
 andi t3, t0, 0x20
 beq t3, r0, 1f
 li t2, 3
 andi t3, t0, 0x10
 beq t3, r0, 1f
 li t2, 4
 andi t3, t0, 0x08
 beq t3, r0, 1f
 li t2, 5
 andi t3, t0, 0x04
 beq t3, r0, 1f
 li t2, 6
 andi t3, t0, 0x02
 beq t3, r0, 1f
 li t2, 7
 andi t3, t0, 0x01
 beq t3, r0, 1f
 li t2, 8
 b 2f
 li t1, 9
1: /* length = value */
 move t1, t2
2: /* done *

Page 236

Since version 7.0.7.4, ESP32forth includes a complete XTENSA assembler. This assembler
uses infix notation:

\ in conventional assembler:
\ andi t3, t0, 0x01

\ in XTENSA assembler with ESP32forth:
 a3 a0 $01 ANDI,

ESP32forth is the very first high-level programming language for ESP32 that
integrates an XTENSA assembler.

This feature allows the programmer to define his assembly macros.

Any word written in XTENSA assembly language from ESP32forth is immediately usable in
any definition in FORTH language.

Compile the XTENSA assembler
Since version 7.0.7.15, ESP32forth offers the XTENSA assembler as an option. To compile
this option :

 optional folder in the folder where you unzipped the ZIP file of the ESP32forth
version;

 assemblers.h file to the root folder containing the ESP32forth.ino file;

 run ARDUINO IDE, compile ESP32forth.ino and upload to ESP32 board;

If everything went well, you access the XTENSA assembler by typing once :

xtensa-assembler

To check the correct availability of the XTENSA instruction set:

assemble xtensa vlist

Programming in assembler
In order to clearly understand what was stated previously, here is a definition proposed as
an example by Brad NELSON :

\ example proposed by Brad NELSON
code my2*
 a1 32 ENTRY,
 a8 a2 0 L32I.N,
 a8 a8 1 SLLI,
 a8 a2 0 S32I.N,
 RETW.N,
end-code

Page 237

We have just defined the word my2* which has exactly the same action as the word 2* .
Assembling the code is immediate. We can therefore test our definition of my2* from the
terminal :

--> 3 my2*
OK
6 --> 21 my2*
OK
6 42 -->

This possibility of immediately testing an assembled code allows it to be tested in situ. If
we have to write somewhat complex code, it will be easy to cut it into fragments and test
each part of this code from the ESP32forth interpreter.

The XTENSA assembly code is placed after the word to be defined. It is the code sequence
my2* which creates the word my2* .

The following lines contain the XTENSA assembly code. The assembly definition ends with
the execution of end-code.

Summary of basic instructions
List of basic instructions included in all versions of the Xtensa architecture. The remainder
of this section provides an overview of the basic instructions.

Load / loading

L8UI, L16SI, L16UI, L32I, L32R,

Store / storage

S8I, S16I, S32I,

Memory ordering

MEMW, EXTW,

Jumps

CALL0, CALLX0, RET, J, JX,

Conditional branching

BALL, BNALL, BANY, BNONE, BBC, BBCI, BBS, BBSI, BEQ, BEQI, BEQZ, BNE,
BNEI, BNEZ,BGE, BGEI, BGEU, BGEUI, BGEZ, BLT, BLTI, BLTU, BLTUI, BLTZ,

Shift

MOVI, MOVEQZ, MOVGEZ, MOVLTZ, MOVNEZ,

Arithmetic

ADDMI, ADD, ADDX2, ADDX4, ADDX8, SUB, SUBX2, SUBX4, SUBX8, NEG, ABS,

Page 238

Binary logic

AND, OR,

Shift

EXTUI, SRLI, SRAI, SLLI, SRC, SLL, SRL, SRA, SSL, SSR, SSAI, SSA8B, SSA8L,

Processor control

RSR, WSR, XSR, RUR, WUR, ISYNC, RSYNC, ESYNC, DSYNC, NOP,

A bonus disassembler
An assembler is very good. Easy code to integrate with FORTH definitions is wonderful.
But having an XTENSA disassembler is royal!

Let's take the definition of my2* previously assembled. It is easy to disassemble :

' my2* cell+ @ 20 disasm
\ displays:
\ 1074338656 -- a1 32 ENTRY, -- 004136
\ 1074338659 -- a8 a2 0 L32I.N, -- 0288
\ 1074338661 -- a8 a8 1 SLLI, -- 1188F0
\ 1074338664 -- a8 a2 0 S32I.N, -- 0289
\ 1074338666 -- RETW.N, -- F01D
\ 1074338668 --

The code of our word my2* is only accessible by indirection, the address of which is
placed in the parameters field.

Each line displays :

 the address of the assembled code

 the disassembled code at this address on 2 or 3 bytes

 the hexadecimal code corresponding to the disassembled code

The disassembler can also act on all code already compiled or assembled. Let's see the
code for word 2* :

' 2* @ 20 disasm
\ displays:
\ 1074606252 -- a12 a3 0 L32I.N, -- 03C8
\ 1074606254 -- a5 a5 1 SLLI, -- 1155F0
\ 1074606257 -- a15 a12 0 L32I.N, -- 0CF8
\ 1074606259 -- a3 a3 4 ADDI.N, -- 334B
\ 1074606261 -- 1074597318 J, -- F74346

Disassembly indicates that the code leads to an unconditional jump 1074597318 J ,. It is
easy to continue disassembly to this new address :

Page 239

1074597318 20 disasm
\ display:
\ 1074597318 -- a15 JX, -- 000FA0
\ 1074597321 -- a10 64672 L32R, -- FCA0A1
\ 1074597324 -- a5 a7 1 S32I, -- 016752
\ 1074597327 -- 1074633168 CALL8, -- 08C025
\ 1074597330 -- a12 a3 0 L32I, -- 0023C2
\ 1074597333 -- a2 a7 4 ADDI, -- 04C722
\ 1074597336

Page 240

First steps in XTENSA assembler

Preamble
The assembly code is not portable in another environment, or at the cost of enormous
efforts to understand and adapt the assembled code.

A FORTH version is not complete if it does not have an assembler.

Assembler programming is not required. But in some cases, creating a definition in
assembler can be much easier than a version in C language or in pure FORTH language.

But above all, a definition written in assembler will have unrivaled speed of execution.

We will see, using very simple and very short examples, how to master the programming
of FORTH definitions written in Xtensa assembler.

Invoking the Xtensa assembler
When starting ESP32forth, it is impossible to define words in Xtensa assembly without
invoking the word xtensa-assembler . This word will load the content of the xtensa
vocabulary. This word must only be invoked once when starting ESP32forth and before
any definition of a word in xtensa code :

forth
DEFINED? invert code [IF] xtensa-assembler [THEN]

Now, if we type order , ESP32forth displays :

xtensa >> asm >> FORTH

It is this order of vocabularies that must be respected when we want to define a new
word in Xtensa assembly using the definition words code and end-code .

Xtensa and the FORTH stack
The Xtensa processor has 16 registers, a0 to a15. In reality, there are 64 registers, but we
can only access a window of 16 registers among these 64 registers, accessible in the
interval 00..15.

Register a2 contains the FORTH stack pointer.

Each time a value is stacked, the stack pointer is incremented by four units:

Page 241

SP@ . \ displays 1073632236
1
SP@ . \ displays 1073632240
2
SP@ . \ displays 1073632244
drop drop
SP@ . \ 1073632236

Here is how we could rewrite this word SP@ in Xtensa assembler :

\ get SP Stack Pointer - equivalent to SP@
code mySP@
 a1 32 ENTRY,
 a8 a2 MOV.N, \ copy contents of a2 into a8
 a2 a2 4 ADDI, \ increment a2
 a8 a2 0 S32I.N, \ copy a8 into address pointed to by a2+0
 RETW.N,
end-code

Let’s test this new word mySP@ :

mySP@.
\ displays 1073632240
SP@.
\ displays 1073632240

Writing an Xtensa macro instruction
In our definition of the word mySP@ , the sequence a2 a2 4 ADDI, increments the stack
pointer by four units. Without this increment, it is impossible to return a value to the top
of the FORTH stack. With FORTH, we will write a macro that automates this operation.

To start, we'll expand the asm vocabulary :

asm definitions

: macro:
 :
 ;

Our macro definition: is redundant with : but has the advantage of then making the
FORTH code a little more readable when we define a macro-instruction which will extend
the xtensa vocabulary :

xtensa definitions

macro: sp++,
 a2 a2 4 ADDI,
 ;

sp++ macro instruction , we can rewrite the definition of mySP@ :

forth definitions
asm xtensa

 \ get Stack Pointer SP - equivalent for SP@

Page 242

code mySP@
 a1 32 ENTRY,
 a8 a2 MOV.N, \ copy content of a2 in a8
 sp++,
 a8 a2 0 S32I.N, \ copy a8 in address pointed by a2+0
 RETW.N,
end-code

It is perfectly possible to integrate one macro into another. In the mySP@ code , the code
line a8 a2 0 S32I.N, copies the contents of register a8 to the address pointed to by a2.
Here is this new macro instruction :

xtensa definitions

\ increment Stack Pointer and store content of ar in addr pointed by Stack
Pointer
macro: arPUSH, { ar -- }
 sp++,
 ar a2 0 S32I.N,
 ;

This macro instruction uses a local variable ar . We could have done without it, but the
advantage of this variable is that the macro code is more readable.

mySP@ code with this macro-instruction :

forth definitions
asm xtensa

\ get Stack Pointer SP - equivalent to SP@
code mySP@3
 a1 32 ENTRY,
 a8 a2 MOV.N,
 a8 arPUSH,
 RETW.N,
end-code

Let's complete our list of macro instructions :

xtensa definitions

\ décrémente pointeur de pile
macro: sp--, (--)
 a2 a2 -4 ADDI,
 ;

\ Store content of addr pointed by Stack Pointer in ar and decrement Stack
Pointer
macro: arPOP, { ar -- }
 ar a2 0 L32I.N,
 sp--,
 ;

With these new macros, let's rewrite swap :

forth definitions
asm xtensa

Page 243

code mySWAP
 a1 32 ENTRY,
 a9 arPOP,
 a8 arPOP,
 a9 arPUSH,
 a8 arPUSH,
 RETW.N,
end-code

17 24 mySWAP

Managing the FORTH stack in Xtensa assembler
The position of the FORTH stack pointer can be accessed by SP@ . Stacking a 32-bit
integer (default size for ESP32forth) increments this stack pointer by four units.

We discussed how to manage the increment or decrement of this stack pointer through
the sp++ , and sp-- , macro-instructions. These macro instructions move the stack
pointer four units.

Here, we have stacked three values, 1 4 and 9 . Each time you stack, the stack pointer is
incremented automatically. In Xtensa assembler, the stack pointer is found in register a2.
We have seen that we can manipulate the contents of this register with the macro-
instructions sp++ , and sp-- ,. Manipulating this register has a direct action on the stack
pointer managed by ESP32forth.

Here is how we rewrote the word + in assembly by manipulating the stack pointer
through our arPOP, and arPUSH, macro-instructions :

code my+
 a1 32 ENTRY,
 a7 arPOP,
 a8 arPOP,
 a7 a8 a9 ADD,
 a9 arPUSH,
 RETW.N,
end-code

Page 244

There is another way to retrieve data from the stack using the L32I.N, instruction . This
instruction uses an immediate index :

code my+
 a1 32 ENTRY,
 sp--,
 a7 a2 0 L32I.N,
 a8 a2 1 L32I.N,
 a7 a8 a9 ADD,
 a9 a2 0 S32I.N,
 RETW.N,
end-code

Before retrieving the data from the stack, we decrement the stack pointer with our macro
instruction sp-- ,. In this way, the pointer moves back 4 units.

But just because the pointer moves back doesn't mean the previously stacked data
disappears. Let's see this line of code in detail:

a7 a2 0 L32I.N,

This instruction loads register a7 with the contents of the address pointed to by (a2)+n*4.
Here, n is 0. This instruction will put the value 4 in our register a7.

Let's see the following line:

a8 a2 1 L32I.N,

Register a8 is loaded with the contents pointed to by (a2)+1*4. This instruction puts the
value 9 in our register a8.

a9 a2 0 S32I.N,

Here, the contents of register a9 are stored at the address pointed by (a2)+1*0. In fact,
we overwrite the value 4 with the result of adding the contents of registers a7 and a8.

Let's see one last example where we process two parameters and output two of them
onto the data stack. In this example, we rewrite the word /MOD :

Page 245

code my/MOD (n1 n2 -- rem quot)
 a1 32 ENTRY,
 a7 arPOP, \divisor in a7
 a8 arPOP, \ value to divide in a8
 a7 a8 a9 REMS, \a9 = a8 MOD a7
 a9 arPUSH,
 a7 a8 a9 QUOS, \a9 = a8 / a7
 a9 arPUSH,
 RETW.N,
end-code

5 2 my/MOD . . \ display 2 1
-5 -2 my/MOD . . \ display 2 -1

In the word my/MOD we use the same data n1 and n2 placed respectively in registers a8
and a7. It is then the REMS and QUOT instructions which allow the results returned by
my/MOD to be calculated.

Efficiency of words written in XTENSA assembler
In our very last example above, we rewrote the word /MOD . The question to ask is: "is
the word my/MOD really faster in execution than the word /MOD ?".

To do this, we will use the word measure: whose FORTH code is explained in the chapter
Measuring the execution time of a FORTH word .

: test1
 1000000 for
 5 2 /MOD
 drop drop
 next
 ;

: test2
 1000000 for
 5 2 my/MOD
 drop drop
 next
 ;

measure: test1 \ display: execution time: 0.856sec.
measure: test2 \ display: execution time: 0.600sec.

The words test1 and test2 are similar, except that test2 executes my/MOD . Over 1
million iterations, the time saving amounts to 0.144 seconds. It's not much, but the ratio
still seems significant.

Conversely, we see that the FORTH language is very fast in execution time.

Page 246

Loops and connections in XTENSA assembler

The LOOP instruction in XTENSA assembler
The LOOP loop in XTENSA assembler works by using the LOOP instruction to tell the
processor to repeat a block of instructions until a specified counter reaches zero. The loop
is initialized by setting the initial value of the counter, then executing the LOOP
instruction with that value as an argument. On each iteration of the loop, the counter is
decremented by 1 until it reaches zero, at which point the loop stops. In classic
assembler:

 ; Initialization of the counter to 10
 MOVI a0, 10

 ; Beginning of the LOOP loop
loop:
 ; Instruction(s) to repeat
 ...
 ; Decrement the counter and test the stop condition
 LOOP a0, loop

Here, the LOOP loop repeats the instructions between loop: and LOOP a0, looping 10
times, decrementing the counter a0 with each iteration. When the counter reaches zero,
the loop stops.

When the XTENSA processor encounters the LOOP instruction , it initializes three special
registers :

 LCOUNT ← AR[s] − 1
The special register LCOUNT is initialized with the contents of the register as, here
a0 in our example, decremented by one unit. When the counter reaches the value
0, the LOOP instruction completes the loop;

 LBEG ← PC + 3
The LBEG special register contains the start address of the currently executing
LOOP loop. This address is defined by the LOOP instruction.

 LEND ← PC + (024||imm8) + 4 The LEND special register contains the end
address of the currently executing LOOP loop. This address is defined by the LOOP
instruction.

In XTENSA assembler, the LOOP instruction admits two parameters :

 LOOP as, label

label corresponds to an 8-bit offset after the LOOP instruction . You cannot repeat a
code of more than 256 bytes in length.

Page 247

Here is some disassembled XTENSA code using a LOOP loop :

The disassembler indicates a branch address. In reality, the assembled code only contains
this offset indicated by the label in the form of a positive 8-bit value.

Manage a loop in XTENSA assembler with ESP32forth
The FORTH language cannot resolve a forward reference. Unless you fumble around, it is
difficult to use the LOOP instruction without finding a trick.

Defining loop management macro instructions
LOOP, instruction , we will define two macro instructions, respectively For, and Next,
of which here is the code in FORTH language:

: For, { as n -- }
 as n MOVI,
 as 0 LOOP,
 chere 1- to LOOP_OFFSET
 ;

: Next, (--)
 chere LOOP_OFFSET - 2 -
 LOOP_OFFSET [internals] ca! [asm xtensa]
 ;

The For macro instruction accepts the same parameters as the LOOP instruction :

as n For,

 as is the register that contains the number of iterations of the loop;

 n is the number of iterations.

Using the For, and Next macros,
We define a myLOOP word to test the LOOP instruction , via the For, Next, macro
instructions :

code myLOOP (n -- n')
 a1 32 ENTRY,

Page 248

 a8 1 MOVI,
 a9 4 For, \ LOOP start here
 a8 a8 1 ADDI,
 a8 arPUSH, \ push result on stack
 Next,
 RETW.N,
end-code

Register a8 is initialized with the value 1. The For, Next loop increments the contents
of a8 and stacks its contents. This is what running MyLOOP gives :

OK
--> myLoop
OK
2 3 4 5 -->

ATTENTION : if the number of iterations is zero, the number of iterations increases to
232.

Connection instructions in XTENSA assembler
The XTENSA assembler in the xtensa vocabulary has several types of branch
instructions :

 connections using Boolean flags defined in the special register BR : BF, BT,

 the connections carrying out tests on the registers: BALL, BANY, BBC, BBS, BEQ,
BGE, BLT, BNE, BNONE,

It is this second category of connections that interests us.

Defining branching macros
The ESP32forth xtensa assembler does not have a label management mechanism as is the
case for a classic assembler. To be effective, label management must work in several
stages if forward branches need to be resolved. This is incompatible with the operation of
the FORTH language which compiles or assembles in a single pass.

We overcome this difficulty by defining two macro instructions, If, and Then, which will
manage these forward connections:

: If, (-- BRANCH_OFFSET)
 chere 1-
 ;

: Then, { BRANCH_OFFSET -- }
 chere BRANCH_OFFSET - 2 -
 BRANCH_OFFSET [internals] ca! [asm xtensa]
 ;

Page 249

The macro instruction must be preceded by another macro instruction. For our first test,
we define the macro <, which will assemble an unresolved branch:

: <, (as at --)
 0 BGE,
 ;

Using these macros in our first example:

code my< (n1 n2 -- fl) \ fl=1 if n1 < n2
 a1 32 ENTRY,
 a8 arPOP, \ a8 = n2
 a9 arPOP, \ a9 = n1
 a7 0 MOVI, \ a7 = 1
 a8 a9 <, If,
 a7 1 MOVI, \ a7 = 0
 Then,
 a7 arPUSH,
 RETW.N,
end-code

Syntax of branching macro instructions
In our example, we used the macro instruction <, which is associated with the BGE
branch instruction , and whose meaning is: "Branch if Greater Than or Equal". Normally,
it would be translated by ">=". Why was "<" used?

This is because our macro instruction If, Then, has a logic opposite to that of the
branch to be carried out. The code enclosed in If, Then, will execute if the
required condition is not valid. Here is the table which summarizes this reversed logic
explaining the choice of the name of these macro instructions used before If,
Then ,:

my< assembly example . Here is what the execution of the word my< gives :

10 20 my< . \ displays: 1
20 20 my< . \ displays: 0

20 10 my< . \ displays: 0

-5 35 my< . \ displays: 1

-10 -3 my< . \ displays: 1

-3 -10 my< . \ displays: 0

We see that this reversed logic is respected.

Once this logic is understood, we can define a new macro-instruction >= ,:

Page 250

: >=, (as at --)
 0 BLT,
 ;

And test this macro-instruction :

code my>= (n1 n2 -- fl) \ fl=1 if n1 < n2
 a1 32 ENTRY,
 a8 arPOP, \ a8 = n2
 a9 arPOP, \ a9 = n1
 a7 0 MOVI, \ a7 = 1
 a8 a9 >=, If,
 a7 1 MOVI, \ a7 = 0
 Then,
 a7 arPUSH,
 RETW.N,
end-code

10 20 my>= . \ displays: 0
20 20 my>= . \ displays: 1
20 10 my>= . \ displays: 1
-5 35 my>= . \ displays: 0
-10 -3 my>= . \ displays: 0
-3 -10 my>= . \ displays: 1

Page 251

Definition and manipulation of registers
In the ESP32 technical document, we find a very large quantity of registers. These
registers allow you to control all peripherals and GPIO ports on the ESP32 board.

In general, the manipulation of these registers is carried out by the application layer
offered by ESP32forth. It is therefore not necessary to access it directly.

In some cases, it may be interesting to manage registers directly:

 to access features not offered by ESP32forth

 to run FORTH code faster

Definition of registers
Defining a register is very simple:

$3FF48898 constant SENS_SAR_DAC_CTRL1_REG \ DAC control

The first disadvantage of defining a register as a constant is that when reading the source
code, we will not be able to distinguish the register from other constants. We will
therefore define a register creation word like this:

\ define a register, similar as constant

: defREG:

 create (addr1 --)

 ,

 does> (-- regAddr)

 @

 ;

$3FF48898 defREG: SENS_SAR_DAC_CTRL1_REG \ DAC control

This way, by rereading our code, we know that the word created is a register. The other
advantage is that we can modify defREG: to change its behavior: adding control tests,
initializing parameters, etc...

Access to register contents
Example, bit values in the SENS_SAR_DAC_CTRL1_REG register :

Page 252

Figure 16: extrait de Technical Reference manual

This register contains bits or blocks of bits having defined functions.

We will first create a word allowing us to visualize the contents of a register:

\ display reg content

: .reg (reg --)

 base @ >r

 binary

 @ <#

 4 for

 aft

 8 for

 aft # then

 next

 bl hold

 then

 next

 #>

 cr space ." 33222222 22221111 11111100 00000000"

 cr space ." 10987654 32109876 54321098 76543210"

 cr type

 r> base !

 ;

Let's see what the contents of our SENS_SAR_DAC_CTRL1_REG register give :

SENS_SAR_DAC_CTRL1_REG .reg

\ display:

 33222222 22221111 11111100 00000000

 10987654 32109876 54321098 76543210

 00000000 00000000 00000000 00000000 ok

The first two lines allow you to read vertically the rank of a bit in this register, here, in red,
25, whose content is 0. To read this bit, proceed as follows:

SENS_SAR_DAC_CTRL1_REG @

1 25 lshift and

To modify this bit and set it to 1:

1 25 lshift

SENS_SAR_DAC_CTRL1_REG @

or

SENS_SAR_DAC_CTRL1_REG !

Page 253

Figure 17: bits in register ENS_SAR_DAC_CTRL1_REG

Let's check with .reg :

SENS_SAR_DAC_CTRL1_REG .reg

\ display:

 33222222 22221111 11111100 00000000

 10987654 32109876 54321098 76543210

 00000010 00000000 00000000 00000000 ok

If it's just once, it helps. Let's see how to do it more efficiently...

Handling register bits
Let's resume modifying bit 25 of our register SENS_SAR_DAC_CTRL1_REG , here is how to
set bit b25 to 1:

SENS_SAR_DAC_CTRL1_REG .reg \ display:

\ 33222222 22221111 11111100 00000000

\ 10987654 32109876 54321098 76543210

\ 00000000 10000000 00000000 00000000 ok

registers

1 25 $02000000 SENS_SAR_DAC_CTRL1_REG m!

SENS_SAR_DAC_CTRL1_REG .reg \ display:

\ 33222222 22221111 11111100 00000000

\ 10987654 32109876 54321098 76543210

\ 00000010 00000000 00000000 00000000 ok

We use the m! word (val shift mask addr --) which accepts four parameters:

 val which is the value to modify, here 1

 shift which corresponds to the offset to apply to this value, here 25

 mask which corresponds to the logical mask of the register part to modify, here
$02000000

 addr which is the address of the register, here SENS_SAR_DAC_CTRL1_REG

Definition of masks
A mask is used to indicate which bits are modifiable. In the previous example, we modified
bit b25. In the Espressif documentation, bit b25 is marked with the label
SENS_DAC_CLK_INV . The simplest solution would be to create a constant like this:

1 25 lshift constant SENS_DAC_CLK_INV

But this does not adjust the value offset which must be the same as the value of the
binary mask.

Let's see a more elegant way to define masks:

: defMASK:

 create (mask0 position --)

Page 254

 dup ,

 lshift ,

 does> (-- position mask1)

 dup @

 swap cell + @

 ;

1 25 defMASK: mSENS_DAC_CLK_INV

In passing, note that the name of the mask is prefixed with the letter ' m' (for mask). This
is by no means obligatory. But when you have compiled many registers and masks, the
prefix ' m ' will allow you to find your way between registers and masks:

--> words
mSENS_SW_FSTEP mSENS_SW_TONE_EN mSENS_DAC_DIG_FORCE mSENS_DAC_CLK_FORCE_LOW

mSENS_DAC_CLK_FORCE_HIGH mSENS_DAC_CLK_INV defMask: SENS_SAR_DAC_CTRL2_REG

SENS_SAR_DAC_CTRL1_REG GPIO_ENABLE_W1TC_REG GPIO_ENABLE_W1TS_REG GPIO_ENABLE_REG

GPIO_OUT_W1TC_REG GPIO_OUT_W1TS_REG GPIO_OUT_REG DR_REG_GPIO_BASE PIN_DAC2

PIN_DAC1 CONFIG_IDF_TARGET_ESP32S3 CONFIG_IDF_TARGET_ESP32S2 .reg AdcREG:

mtst mset mclr --DAdirect SENS_DAC_CLK_INV defMASK: input$ c+$! mid$ left$

right$ 0$! $! maxlen$ string $= FORTH camera-server camera telnetd bterm

......

The word defined with defMASK: places the mask offset on the stack, here 25 for
mSENS_DAC_CLK_INV and the value of the binary mask to apply.

Let's resume modifying bit b25 with this mask definition:

1 mSENS_DAC_CLK_INV SENS_SAR_DAC_CTRL1_REG m!

SENS_SAR_DAC_CTRL1_REG .reg \ display:

\ 33222222 22221111 11111100 00000000

\ 10987654 32109876 54321098 76543210

\ 00000010 00000000 00000000 00000000

0 mSENS_DAC_CLK_INV SENS_SAR_DAC_CTRL1_REG m!

SENS_SAR_DAC_CTRL1_REG .reg \ display:

\ 33222222 22221111 11111100 00000000

\ 10987654 32109876 54321098 76543210

\ 00000000 00000000 00000000 00000000

Switching from C language to FORTH language
With ESP32Forth, there are two solutions for adding primitives to the dictionary:

 rewrite the ESP32Forth source code by adding the desired primitives;

 rewrite these C language words in FORTH

The first solution, in C language, is written here:

#ifndef ENABLE_DAC_SUPPORT

Page 255

define OPTIONAL_DAC_SUPPORT

#else

include <driver/dac.h>

include <driver/dac_common.h>

include <soc/rtc_io_reg.h>

include <soc/rtc_cntl_reg.h>

include <soc/sens_reg.h>

include <soc/rtc.h>

define OPTIONAL_DAC_SUPPORT \

Y(dac_output_enable, n0 = dac_output_enable((dac_channel_t) n0)) \

Y(dac_output_disable, n0 = dac_output_disable((dac_channel_t) n0)) \

Y(dac_output_voltage, n0 = dac_output_voltage((dac_channel_t) n1, (gpio_num_t) n0); NIP) \

Y(dac_cw_generator_enable, PUSH dac_cw_generator_enable ()) \

Y(dac_cw_generator_disable, PUSH dac_cw_generator_disable ()) \

Y(dac_i2s_enable, PUSH dac_i2s_enable()) \

Y(dac_i2s_disable, PUSH dac_i2s_disable()) \

Y(rtc_freq_div_set, REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, n0); DROP) \

Y(dac_freq_step_set, SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL1_REG, SENS_SW_FSTEP, n0, SENS_SW_FSTEP_S);
DROP) \

Y(dac1_scale_set, SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_SCALE1, 0, SENS_DAC_SCALE1_S);) \

Y(dac2_scale_set, SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_SCALE2, 0, SENS_DAC_SCALE2_S);) \

Y(dac1_offset_set, SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_DC1, n0, SENS_DAC_DC1_S); DROP) \

Y(dac2_offset_set, SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_DC2, n0, SENS_DAC_DC2_S); DROP) \

Y(dac1_invert_set, SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_INV1, n0, SENS_DAC_INV1_S); DROP) \

Y(dac2_invert_set, SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_INV2, n0, SENS_DAC_INV2_S); DROP) \

Y(dac1_cosine_enable, SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN1_M);) \

Y(dac2_cosine_enable, SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN2_M);) \

Y(dacWrite, dacWrite(n1, n0); DROPn(2))

#endif

The second solution is to look at the source code of a file written in C language and try to
understand how registers are manipulated in this language.

Extract from the dac-cosine.c file :

/*

 * Enable cosine waveform generator on a DAC channel

 */

void dac_cosine_enable(dac_channel_t channel)

{

 // Enable tone generator common to both channels

 SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL1_REG, SENS_SW_TONE_EN);

 switch(channel) {

 case DAC_CHANNEL_1:

 // Enable / connect tone tone generator on / to this channel

 SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN1_M);

 // Invert MSB, otherwise part of waveform will have inverted

 SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_INV1, 2, SENS_DAC_INV1_S);

 break;

 case DAC_CHANNEL_2:

 SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN2_M);

 SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_INV2, 2, SENS_DAC_INV2_S);

 break;

 default :

 printf("Channel %d\n", channel);

 }

}

One of the C functions that comes up often is SET_PERI_REG_MASK . This function
sets the bits designated by a mask in a register to 1. Example:

Page 256

SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN1_M);

The C function that sets bits designated by a mask in a register to 0 is
CLEAR_PERI_REG_MASK.

We will be interested in how we will rewrite dac_cosine_enable(dac_channel_t
channel) in FORTH language. We see that the register SENS_SAR_DAC_CTRL2_REG is
mentioned. We will define this register:

$3FF4889c defREG: SENS_SAR_DAC_CTRL2_REG \ DAC output control

SENS_SAR_DAC_CTRL2_REG register , the two bits that interest us are b24 and b25. Let's
define the corresponding masks:

1 24 defMASK: mSENS_DAC_CW_EN1 \ selects CW generator as source for PDAC1

1 25 defMASK: mSENS_DAC_CW_EN2 \ selects CW generator as source for PDAC2

'Bare-metal' programming acting directly on the ESP32 registers does not require defining
in FORTH all the registers and register masks as the C language does. Limit yourself to the
registers and masks essential for your application.

It is recommended to use the names of registers and register masks as appearing in the
Espressif documentation, or failing that the register names used in the C language source
codes.

Managing some devices is very complex. The Espressif documentation is stingy with
examples on the direct use of registers.

Page 257

The random number generator

Characteristic
The random number generator generates true random numbers, which means a random
number generated from a physical process, rather than by means of an algorithm. No
number generated within the specified range is more or less likely to appear than any
other number.

Each 32-bit value that the system reads from the RNG_DATA_REG register of the random
number generator is a true random number. These true random numbers are generated
based on thermal noise in the system and asynchronous clock skew.

Thermal noise comes from the high speed ADC or the SAR ADC or both. Whenever the
high speed ADC or SAR ADC is activated, the bit streams will be generated and fed into
the random number generator via an XOR logic gate as random seeds.

When the RTC8M_CLK clock is enabled for the digital core, the random number generator
will also sample RTC8M_CLK (8 MHz) as a random binary seed. RTC8M_CLK is an
asynchronous clock source and it increases the RNG entropy by introducing circuit
metastability. However, to ensure maximum entropy, it is also recommended to always
enable an ADC source.

When there is noise from the SAR ADC, the random number generator is fed with an
entropy of 2 bits in a clock cycle of RTC8M_CLK (8 MHz), which is generated from an
internal RC oscillator (see the Reset and Clock chapter for more details). Thus, it is
advisable to read the RNG_DATA_REG register at a maximum rate of 500 kHz to obtain the
maximum entropy.

When there is noise from the high-speed ADC, the random number generator is fed 2-bit
entropy in an APB clock cycle, which is normally 80 MHz. Thus, it is advisable to read the
RNG_DATA_REG register at a maximum rate of 5 MHz to obtain the maximum entropy.

Page 258

A 2 GB data sample, which is read from the random number generator at a frequency of 5
MHz with only the high speed ADC being enabled, was tested using the Dieharder Random
Number test suite (version 3.31.1). The sample passed all tests.

Programming procedure
When using the random number generator, make sure that at least SAR ADC, High Speed
ADC, or RTC8M_CLK is allowed. Otherwise, pseudo-random numbers will be returned.

 SAR ADC can be activated using the DIG ADC controller.

 High-speed ADC is automatically enabled when Wi-Fi or Bluetooth modules are
enabled.

 RTC8M_CLK is enabled by setting the RTC_CNTL_DIG_CLK8M_EN bit in the
RTC_CNTL_CLK_CONF_REG register.

When using the random number generator, read the RNG_DATA_REG register several times
until there are enough random numbers generated.

\ Random number data
$3FF75144 constant RNG_DATA_REG

\ get 32 bits random b=number
: rnd (-- x)
 RNG_DATA_REG L@
 ;

\ get random number in interval [0..n-1]
: random (n -- 0..n-1)
 rnd swap mod
 ;

RND function in XTENSA assembler
Since version 7.0.7.4, ESP32forth has an XTENSA assembler. It is possible to rewrite our
rnd word in XTENSA assembler:

forth definitions
asm xtensa
$3FF75144 constant RNG_DATA_REG

code myRND (-- [addr])
 a1 32 ENTRY,
 a8 RNG_DATA_REG L32R, \ a8 = RNG_DATA_REG
 a9 a8 0 L32I.N, \ a9 = [a8]
 a9 arPUSH, \ push a9 on stack
 RETW.N,
end-code

Page 259

The LoRa transmission system
LoRa is a communications technology that uses a low-power wide area network. LoRa
allows you to wirelessly connect devices and gateways.

This standard does not yet require any subscription. It offers peer-to-peer
communication.

LoRa, WiFi and Bluetooth are complementary and do not overlap.
Compared to Wi-Fi and Bluetooth which provide very short range,
LoRa benefits from very narrow bandwidth. Gateways or hubs are
used barely 1% of the time by connected devices. Which
significantly reduces bandwidth. Traffic is slow and unidirectional
between the sensors and the gateway. LoRa is the best way to
communicate over several kilometers, with very little power and
in a very simple way!

Cabling of the REYAX LR890 LoRa transmitter
The transmitter is connected to the ESP32 card like this:

ATTENTION: check the position of pins G16 and G17 on your ESP32 card which may be
different depending on your version of ESP32 card.

The LoRa transmitter for ESP32
The REYAX LR890 module costs around €15. It weighs 7 grams.

Page 260

Its consumption, in transmission, is 43 mA (3.3V). In reception, it is 16.5 mA and can drop
to 0.5 mA in SLEEP mode.

To ensure point-to-point transmission, two LoRa modules are required. Each module is a
transmitter and receiver.

The ESP32 card communicates via its serial port with the LoRa module. All transmissions
between the ESP32 board and the LoRa transmitter are processed through AT commands.
Example:

AT+SEND=50,5,HELLO

This chain is transmitted by the ESP32 card to the LoRa transmission module:

 the LoRa module switches to transmission mode and transmits this character string

 immediately after transmission, the LoRa module returns to receive mode

 the remote LoRa module receives the character string.

 the remote LoRa module can acknowledge this reception by +OK

A LoRa module can communicate with a LoRaWan gateway. It is generally a box
connected to a router via Ethernet connection. It is therefore possible to have a web
application that communicates with one or more LoRa modules.

LoRa transmission security
A single LoRa module can communicate with several remote LoRa modules.

These LoRa modules must be differentiated by their NETWORKID . The transmitter and
receiver must have the same NETWORKID .

Then, each module receives an ADDRESS , by default 0. This address is between
0..65535.

Transmission can be encrypted using a 32-character AES key . The transmitter and
receiver LoRa modules must have the same AES key . If a module receives a message
encrypted with an unknown AES key , it will ignore the message.

And finally, each module is assigned a transmission frequency. The transmitter and
receiver modules must work on the same frequency.

Example of 868.5 MHz frequency selection.

\ select frequency 865.5 Mhz for LoRa transmission

Page 261

32 string AT_BAND
s" AT+BAND=868500000" AT_BAND $! \ set frequency at 868.5 MHz
$0a AT_BAND c+$!
$0d AT_BAND c+$! \add CR LF code at end of command
AT_BAND Serial2.write drop

On the same frequency, we can manage a fleet of 65,535 LoRa modules, each module
having its address. If we transmit with address 0, we will address all LoRa modules.

If we add the AES encryption key, there will be hundreds of thousands of LoRa modules
that can coexist within a radius of a few kilometers!

The range of the modules can be increased by changing the transmit power. We can also
act on the receiving antenna. With a directional antenna, you can reach 20 to 30
kilometers of range...

Page 262

Review of the REYAX RYLR890 LoRa transmitter

Required test environment
To test our REYAX RYLR890 LoRa transmitter, you must:

 use string management words…. @todo: reference in file

 use an ESP32Forth version with access to the UART2 port

 wire the REYAX RYLR890 LoRa transmitter as follows:

Prepare communication with the LoRa transmitter
All programmers who manage the UART2 port define a memory area which will serve as a
buffer. For our part, we will directly create an alphanumeric variable:

128 string LoRaTX \ buffer ESP32 -> LoRa transmitter

Here we will only carry out tests of sending commands to the REYAX RYLR890 LoRa
transmitter and see how to recover what this same transmitter sends back. We therefore
need another alphanumeric variable for reception:

128 string LoRaRX \ buffer LoRa transmitter -> ESP32

Let's start by initializing the serial transmission to the LoRa transmitter. Here the speed is
115200 baud. This is the default transmission speed of the LoRa transmitter:

Page 263

Serial \ Select Serial vocabulary

\ initialise Serial2
: Serial2.init (--)
 #SERIAL2_RATE Serial2.begin
 ;

For our test command to the LoRa transmitter, we select the working frequency of the
transmitter, here 868.5 Mhz:

\ Setup LoRa Frequency
: .band8685 (--)
 s" AT+BAND=868500000" LoRaTX $!
 $0d LoRaTX c+$!
 $0a LoRaTX c+$! \ add CR LF code at end of command
 LoRaTX Serial2.write drop
 ;

Finally, we define a word allowing us to retrieve the response from the LoRa transmitter:

\ input from LoRa transmitter
: LoRaInput (-- n)
 Serial2.available dup if
 LoRaRX maxlen$ nip
 Serial2.readBytes
 LoRaRX drop cell - !
 then
 ;

The LoRaInput word tests whether a serial link transmission has been received from the
UART2 serial port:

 if there is no reception, returns 0

 if it has characters, stores those characters in the LoRaRX alphanumeric string and
updates the size of that string.

Example of transmission and reception :

Serial2.init
.band8685
LoRaInput

Here is what a LoRaRX memory dump gives :

LoRaRX dump
--addr--- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ------chars-----
3FFF-87A0 05 00 00 00 2B 4F 4B 0D 0A 31 0D 0A 2B 4F 4B 0D +OK..1..+OK.

If we run LoRaRX , we recover the address and especially the length of all the characters
received, including the characters CR+LF ($0d $0a). To only manage characters strictly
included in the interval [0..9A..Za..z], you must reduce the size of the string by two units :

: LoRaType (--)

Page 264

 LoRaRX dup 0 > if
 2 - type
 else
 2drop
 then
 ;
LoRaType \ display: +OK

Here, running LoRaType displays +OK which is the response to our test command
AT+BAND=868500000 .

Page 265

Setting up the REYAX RYLR890 LoRa transmitter
Before defining commands for our REYAX RYLR896 LoRa transmitter, we define the word
crlf :

: crlf (--) \ same action as cr, but adapted for LoRa
 $0d emit
 $0a emit
 ;

The purpose of this crlf word is to complete the transmission on the UART2 port from the
ESP32 board to the LoRa transmitter. The definition of this word uses emit. Do not be
surprised. We will see later how to exploit the vectorized execution of words in FORTH
language to perform the desired action at emit. This solution will surprise beginner FORTH
language programmers. It will also show how FORTH is much more flexible than many
other programming languages.

Essential parameters
Here is the list of essential parameters to configure your LoRa module.

The sequence of using the AT command :

 Use AT+ADDRESS to set ADDRESS. The ADDRESS is considered to be the
identification of the specified transmitter or receiver.

 Use AT+NETWORKID to set the Lora network ID. This is a group function. Only
by setting the same NETWORKID can modules communicate with each other. If the
specified recipient's ADDRESS belongs to a different group, it is not able to
communicate with each other. The recommended value: 1 ~ 15

 Use AT+BAND to adjust the center frequency of the wireless band. The
transmitter and receiver must use the same frequency to communicate with each
other.

 Use AT+PARAMETER to adjust RF wireless settings. The transmitter and receiver
must set the same parameters to communicate with each other. The parameters
are to be defined as follows:

◦ <Spreading Factor> : The larger the SF, the better the sensitivity. But the
transmission time will take longer.

◦ <Bandwidth> : The smaller the bandwidth, the better the sensitivity. But the
transmission time will take longer.

◦ <Coding Rate> : The coding rate will be fastest if you set it to 1.

Page 266

◦ <Programmed Preamble> : Preamble code. If the preamble code is bigger,
it will result in less chance of losing data. Preamble code generally can be set
above 10 if under the authorization of transmission time.
* Communication up to 3 km: recommended setting
“AT+PARAMETER=10.7,1.7”
* More than 3 km: recommended setting “AT+PARAMETER=12.4,1.7”

 Use AT+SEND to send data to the specified ADDRESS. Due to the program used
by the module, the payload part will increase by more than 8 bytes compared to
the actual data length.

It is necessary to pass crlf at the end of all AT commands .

You must wait for the module to respond +OK so that you can execute the next AT
command .

ADDRESS Defines the module address
Each LoRa transmission module must have a personal address.

syntax response

AT+ADDRESS=<address> +OK

AT+ADDRESS=? +ADDRESS=22

\ Set the ADDRESS of LoRa transmitter:
\ s" " value in interval [0..65535][?] (default 0)
: ATaddress (addr len --)
 ." AT+ADDRESS="
 type crlf
 ;

<Address>=0~65535(default 0)

Example: Set module address to 22 . The settings will be stored in LoRa.

s" 22" Ataddress

Page 267

AT Test LoRa Availability

syntax response

A.T. +OK

\ Test LoRa disponibility
: AT_ (--)
 ." AT"
 type crlf
 ;

BAND Setting the RF frequency

syntax response

AT+BAND=<parameter> +OK

AT+BAND=? +BAND=868500000

\ Set the BAND of LoRa transmitter:
\ s" " value is RF frequency, unit Hz
: ATband (addr len --)
 ." AT+BAND="
 type crlf
 ;

Parameter is RF frequency, unit is Hz: 915000000Hz (default: RYLY89x)

Example: Select the frequency at 868500000Hz:

s" 868500000" ATband

CPIN Sets the AES128 network password

syntax response

AT+CPIN=<password> +OK

AT+CPIN=? +CPIN=FABC0002EEDCA…..
Password: AES password of 32 characters from 0000000000000000000000000000001 to
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF.

The exchange is accepted if both modules have the same password. After reset, the
previous password is deleted.

\ Set the AES32 password:
\ s" <parameter>" value is an 32 character long AES password
\ from 00000000000000000000000000000001 to
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
: ATcpin (addr len --)
 ." AT+CPIN="
 type crlf
 ;

Page 268

Example: Select this password: FABC0002EEDCAA90FABC0002EEDCAA90

s" FABC0002EEDCAA90FABC0002EEDCAA90" ATcpin

CRFOP Selects the output RF power

syntax response

AT+CRFOP=<power> +OK

AT+CRFOP=? +CRFOP=10
Power: between 0..15, 15dBm (default)

\ Set the CRFOP RF output power:
\ s" " value is RF output power between 0..15
: ATcrfop (addr len --)
 ." AT+CRFOP="
 type crlf
 ;

Example, select the output power at 10dBm:

s" 10" ATcrfop

FACTORY Sets all current settings to default values

Sets all current settings to manufacturer defaults.

syntax response

AT+FACTORY +FACTORY

\ Reset the LoRa transmitter with FACTORY parameters
: ATfactory (--)
 ." AT+FACTORY"
 crlf
 ;

IPR Sets the UART baud rate

syntax response

AT+IPR=<parameter> +OK

AT+IPR=? +IPR=38400
UART baud parameter:

 300

 1200

 4800

 9600

 19200

Page 269

 28800

 38400

 57600

 115200 (default)

The settings will be stored in the EEPROM.

MODE Selects the working mode

syntax response

AT+MODE=<parameter> +OK

AT+MODE=? +MODE=1
Setting:

 0：Transmit and Receive mode (default).

 1：Sleep mode.

\ Set work MODE:
\ s" " value is [0,1]
\ 0 (defalt) Transmit and Receive mode
\ 1 Sleep mode
: ATmode (addr len --)
 ." AT+MODE"
 type crlf
 ;

NETWORKID Selects the network ID

syntax response

AT+NETWORKID=<Network ID> +OK

AT+NETWORKID=? +NETWORKID=6

\ Set NETWORKID:
\ s" " value is [0..16] (0 bay default)
: ATnetworkid (addr len --)
 ." AT+NETWORKID"
 type crlf
 ;

Network ID: 0~16(0 by default)

Example: select network ID to 6. The settings will be stored in the EEPROM.

The “0” is the public identifier for LoRa. It is not recommended to use 0 to set the
NETWORK ID.

s" 6" Atnetworkid

Page 270

PARAMETER definition of RF parameters

syntax response

AT+PARAMETER=<Spreading
Factor>, <Bandwidth>,<Coding
Rate>, <Programmed Preamble>

+OK

AT+PARAMETER=? +PARAMETER=7,3,4,5

Parameters:

 Spreading Factor

◦ 7~12, (default 12)

 Bandwidth / bandwidth (0~9):

◦ 0: 7.8KHz (not recommended, over spec.)

◦ 1: 10.4KHz (not recommended, over spec.)

◦ 2: 15.6KHz

◦ 3: 20.8KHz

◦ 4: 31.25KHz

◦ 5: 41.7KHz

◦ 6: 62.5KHz

◦ 7: 125KHz (default).

◦ 8: 250KHz

◦ 9: 500KHz

 Coding rate

◦ 1~4, (default 1)

 Programmed Preamble

◦ 4~7 (default 4)

Spreading Factor

Spreading factor Bitrate / flow

7 5469 bps

8 3125 bps

9 1758bps

10 977 bps

11 537 bps

12 293 bps

Page 271

Coding rate

LoRa modulation also adds forward error correction (FEC) into each data transmission.
This implementation is done by encoding 4-bit data with redundancies in 5 bits, 6 bits, 7
bits, or even 8 bits. Using this redundancy will allow the LoRa signal to cover interference.
The coding rate value should be adjusted according to the conditions of the channel used
for data transmission. If there is too much interference in the channel, then it is
recommended to increase the coding rate value.

However, increasing the CR value will also increase the transmission duration.

Example: setting parameters as below:
<Spreading Factor> 7,<Bandwidth> 20.8KHz, <Coding Rate> 4,<Programmed
Preamble>5,

s" 7,3,4,5" Atparameter

Software RESET

syntax response

AT+RESET +OK

\ RESET the LoRa transmitter
: ATreset (--)
 ." AT+RESET"
 crlf
 ;

SEND sending data to the designated address

syntax response

AT+SEND=<Address>,<Payload
Length>,<Data>

+OK

AT+SEND=? +SEND=50.5,HELLO

<Address>0~65535, when <address> is 0, it will send data to all address
(from 0 to 65535.)

<Payload Length>Maximum 240 bytes

<Data>ASCII Format

Forth code for ESP32Forth:

\ convert a number to a decimal string
: .n (n ---)
 base @ >r decimal
 <# #s #> type
 r> base !
 ;
\ SEND Send data to the appointment address
: ATsend { addr len address -- }
 ." AT+SEND="

Page 272

 address .n [char] , emit
 len .n [char] , emit
 addr len type crlf
 ;

Example: sends the string HELLO to Address 50:

s" HELLO" 50 ATsend \ display: AT+SEND=50;5;HELLO

VER to request firmware version
\ VER to inquire the firmware version
: ATver (--)
 ." AT+VER"
 crlf
 ;

Error result codes

 +ERR=1 there is no “enter” or $0D $0A at the end of the AT command

 +ERR=2 the head of the AT command is not an “AT” string

 +ERR=3 there is no “=” symbol in the AT command

 +ERR=4 unknown command

 +ERR=10 TX is on time

 +ERR=11 RX is exceeded

 +ERR=12 CRC error

 +ERR=13 TX data of more than 240 bytes

 +ERR=15 Unknown error

Vectorization of character emissions

If you have followed the development of our words to configure the REYAX RYLR890 LoRa
transmitter up to this point, something has certainly surprised you:

\ Set the ADDRESS of LoRa transmitter:
\ s" <adress>" value in interval [0..65535][?] (default 0)
: ATaddress (addr len --)
 ." AT+ADDRESS="
 type crlf
 ;

Because, unless I'm mistaken, this sequence " AT+ADDRESS=" sends the character string
to our terminal, and not to the transmitter via the UART2 serial eport, therefore to the
LoRa transmitter!

We understand your surprise. And we will see how to divert the character flow to the LoRa
transmitter without changing anything in the definition of our word ATaddress .

Page 273

Understanding vectorization in FORTH

The FORTH language has certain advantages that are completely non-existent in many
other programming languages. Among these assets, let us mention the word defer . This
word allows you to create a word whose action is deferred:

defer myWords

defer creates a myWords word that does NOTHING!!!

Yes!

It is now up to us to give it action. Let's see this definition:

: (myWords) (--)
 cr ." I display my words: "
 ;

For myWords to execute (myWords) we get the action code from (myWords) and assign it
to myWords:

' (myWords) is myWords

From now on, if we type myWords, the action defined in (myWords) will be executed.

OK. But here, is it necessary to do such an overhead of code if we can simply execute
(myWords) ?

And you are absolutely right to ask this question. But you can change the action of
myWords :

' vlist is myWords

Now, if we type myWords , the word vlist is executed.

We will see how to use this mechanism to modify the behavior of ESP32Forth…

Vectorization in ESP32Forth

Let's start with a little reverse engineering. Digging into the ESP32Forth code, we find this
for the word .":

: ."
 postpone s" state @ if postpone type else type then ; immediate

Here, the word that interests us is type whose definition is:

defer type

Ahhhh..… Are you starting to understand?

What action does type? We find this in the source code of ESP32Forth :

: serial-type (a n --) Serial.write drop ;
: default-type serial-type ;

' default-type is type

Page 274

If we are interested in the word emit, we find this definition in the ESP32Forth source
code :

: emit (n --)
 >r rp@ 1 type rdrop ;

Here again, we find type.

It is therefore on this type word that we will act to divert the emission of characters
towards the UART2 serial port.

Vectorize type to UART2 serial port

It is by looking at the definition of serial-type that we define our version to transmit to
the UART2 serial port :

: serial2-type (a n --)
 Serial2.write drop ;

How far has it gone? Isn't that too difficult?

Now, to divert the character transmission stream from ESP32Forth to the UART2 serial
port, simply execute the sequence ' serial2-type is type .

But if you do that, you will have a little difficulty returning to normal behavior of
ESP32Forth unless you restore type to its initial action with the sequence ' default-
type is type .

Let's encapsulate these sequences in these two words:

: typeToLoRa (--)
 ['] serial2-type is type
 ;

: typeToTerm (--)
 ['] default-type is type
 ;

And now, to execute our ATaddress word by making it transmit the characters to the
UART2 serial port, just type :

typeToLoRa
s" 45" ATaddress \ send AT+ADDRESS=45 to UART2
typeToTerm

And there, I await your remark: “but what is the point of going through vectorization?”

In our case, vectorization offers many advantages :

 write simple code with words already known from the FORTH dictionary of
ESP32Forth ;

 offers the possibility of testing all the configuration words of the LoRa transmitter
towards the terminal ;

Page 275

 possibility to divert the flow to another device, for example I2S or UART1, without
having to rewrite these parameter definitions...

Regardless of our management of the LoRa transmitter parameters, we understand that it
is enough to exploit this same vectorization mechanism for the characters received from
the UART2 serial port to easily take control of ESP32Forth from this serial port!

This is actually what ESP32Forth does if you activate the WiFi or Bluetooth port! I invite
you to explore the source code of ESP32Forth. Look at the server definition :

: server (port --)
 server
 ['] serve-key is key
 ['] serve-type is type
 webserver-task start-task
;

Rewriting a complete listing

The minimum parameters to communicate between ESP32+LoRa cards are: frequency
and address:

\ *** defining LoRa Setup words *****************************

create $crlf
 $0d c, $0a c,

: crlf (--) \ same action as cr, but adapted for LoRa
 $crlf 2 type
 ;

\ Set the ADDRESS of LoRa transmitter:
\ s" " value in interval [0..65535][?] (default 0)
: ATaddress (addr len --)
 ." AT+ADDRESS="
 type crlf ;

\ Set the BAND of LoRa transmitter:
\ s" " value is RF frequency, unit Hz
: ATband (addr len --)
 s" AT+BAND=" type
 type crlf ;

LoRa transmitters, taken out of their original packaging, theoretically communicate at
115200 bauds with the ESP32 card :

\ 115200 speed communication for LoRa REYAX
115200 value #SERIAL2_RATE

\ definition of OUTput and INput buffers
128 string LoRaRX \ buffer LoRa transmitter -> ESP32

Serial \ Select Serial vocabulary

\ initialise Serial2
: Serial2.init (--)
 #SERIAL2_RATE Serial2.begin
 ;

Page 276

We also recover the word LoRaInput which reads the messages returned by the LoRa
transmitter on the UART2 port. The word rx. has been added to facilitate handling :

\ input from LoRa transmitter
: LoRaInput (-- n)
 Serial2.available if
 LoRaRX maxlen$ nip
 Serial2.readBytes
 LoRaRX drop cell - !
 else
 0 LoRaRX drop cell - !
 then
 ;

: rx.
 LoRaINPUT
 loRaRX type
 ;

Here, the words typeToLoRa and typeToTerm are used to transfer the text display from
the terminal to the UART2 port :

\ *** defining defered words ********************************

serial \ Select Serial vocabulary

: serial2-type (a n --)
 Serial2.write drop ;

: typeToLoRa (--)
 0 echo ! \ disable display echo from terminal
 ['] serial2-type is type
 ;

: typeToTerm (--)
 ['] default-type is type
 -1 echo ! \ enable display echo from terminal
 ;

Here we have the necessary and sufficient FORTH words to configure our three REYAX
RYLR890 LoRa transmitters.

Setting up LoRa transmitters

In this photo you have BOSS and SLAV1 labels. These are simple adhesive post-its stuck
to the test plates.

Page 277

We will create three constants associated with these labels:

55 constant LoRaBOSS
39 constant LoRaSLAV1
40 constant LoRaSLAV2

To communicate with each other, our LoRa transmitters must be set to use the same
frequency. The chosen frequency is 868.5 MHz, or 868500000 Hz:

: emptyRX (--)
 LoRaINPUT
 ;

: SETband (--)
 emptyRX
 typeToLoRa
 s" 868500000" ATband
 typeToTerm
 ;

Let's start configuring our first LoRa transmitter :

serial2.init
SETband
rx. \ display +OK

If all goes well, performing rx. displays +OK .

This is the message returned by the LoRa transmitter. It is possible to get an error
message, like +ERR=1. Repeat the settings command.

The frequency is indicated in 9 digits, without separators or spaces. The unit is Hz 12.

The REYAX RYLR896 LoRa module can operate frequencies from 862 MHz to 1020 MHz.

ATTENTION : the antenna must be tuned to the frequency used! The antenna fitted to
the REYAX LoRa module is tuned for frequencies around 868 MHz. Using a poorly tuned
antenna will considerably reduce the transmission efficiency of the LoRa module.

12 For FRANCE, the free frequency band goes from 863 MHz to 868.6 MHz. Source:
ARCEP The “free bands portal”

Page 278

LoRa modules transmit in narrow band. Choose any frequency from the frequencies
authorized in your country.

Determining the address of LoRa transmitters

To be operational, all transmitters on a network must be on the same frequency. When
you want to transmit a message to a particular transmitter, you must indicate the address
of the recipient transmitter. For example, if BOSS wants to send a message to SLAV1 ,
we will transmit the message to the transmitter which has address 39.

ATTENTION : you cannot have two transmitters with the same address on the same
frequency!

Here definition of the word allowing to configure address 55 for the BOSS transmitter :

: SETaddress (n --)
 emptyRX
 typeToLoRa
 str ATband
 typeToTerm
 ;
LoRaBOSS SETaddress
rx. \ display +OK

We can take any value for each transmitter, in the interval [1..65535]. Address 0 is
reserved for transmissions to all LoRa transmitters listening on the same frequency.

Now that our BOSS transmitter is configured, we can disconnect it from the PC and plug
in the one labeled SLAV1 . We compile the source script and start configuring SLAV1 :

serial2.init
SETband
rx. \ display +OK

LoRaSLAV1 SETaddress
rx. \ display +OK

Page 279

Communication between two REYAX RYLR890 LoRa
transmitters
To initialize our REYAX RYLR890 LoRa transmitters, you must:

 have two REYAX RYLR890 LoRa transmitters with the ESP32 card

 connect each ESP32 board to an available USB port on your PC

Here, under Linux, we have opened two Minicom terminals :

Linux commands to open these two terminals:

 from the keyboard, launch the command terminal using CTRL-ALT-T

 in the command window, typing sudo minicom launches the minicom terminal
connected to /dev/ttyUSB0

 In the prompt, type the Linux administrator password. The first terminal gives
access to your first ESP32 card

 again, from the keyboard, launch the command terminal using CTRL-ALT-T

 in this new command window, type sudo minicom -D /dev/ttyUSB1 which launches
another minicom terminal connected to /dev/ttyUSB1

 In the prompt, type the Linux administrator password. This other terminal gives
access to the second ESP32 card

Page 280

Transmission from BOSS to SLAV2
The listing of our FORTH code is only slightly different from that of the previous chapter.
We simply removed the words ATaddress and ATband. These words are no longer
necessary to configure our LoRa BOSS , SLAV1 and SLAV2 transmitters .

Once configured, a LoRa transmitter maintains this setting, even when powered off.
Powering on an ESP32 card and its LoRa transmitter does not change the settings of the
LoRa transmitter.

The words ATaddress and ATband are replaced by Atsend :

\ SEND Send data to the appointment address
: ATsend { addr len address -- }
 ." AT+SEND="
 address n. [char] , emit
 len n. [char] , emit
 addr len type crlf
 ;

Now, we integrate this word into toSLAV2 :

: toSLAV2 (addr len --)
 emptyRX
 typeToLoRa
 LoRaSLAV2 ATsend
 typeToTerm
 ;

We compile the same program on each
ESP32 (BOSS and SLAV2). It's very easy.
Just copy from the listing and paste into the
terminal. Each ESP32 card will compile its
listing in around ten seconds.

Here, the two windows of our minicom terminal. The left window allows you to control
BOSS .

The right window controls SLAV2 :

Page 281

Let's test the transmission from BOSS to SLAV2 . To do this, place the mouse pointer in
the left window and type directly :

serial2.init
s" this is a transmission test" toSLAV2
rx. \ display: +OK

Are we sure that SLAV2 received the message? Nothing easier.

We place the mouse cursor in the right window and simply type:

serial2.init
rx. \ display: +RCV=55,27,this is a transmission test,-36,40

The result of this transmission by SLAV2 is stored in the alphanumeric variable LoRaRX .

Page 282

Interfacing a LoRa transmission with ESP32Forth
To demonstrate the incredible flexibility of the FORTH language, and more particularly the
ESP32Forth version on ESP32, we will use the program used in the chapter Managing a
traffic light with ESP32 .

The problem with the definitions in this chapter is that the control of the LEDs uses the
GPIO terminals of the serial link. We therefore move the LED connection like this :

Here is the one and only code adaptation that is made to adapt to the new connection of
the LEDs :

\ new code
27 constant ledGREEN \ green LED on GPIO2
26 constant ledYELLOW \ yellow LED on GPIO21
25 constant ledRED \ red LED on GPIO17

Here are the code sequences in FORTH language to selectively turn each LED on or off.
These sequences can be executed from the terminal window connected to the ESP32
card :

LEDinit
ledGREEN high \ set GREEN led on
ledRED high \ set RED led on
ledGREEN low \ set GREEN led off

And it is these sequences, and these alone, which will be transmitted and received by the
LoRa transmitters. Here is the assembly of the LEDs and the LoRa transmitter on our test
plate called SLAV1 :

Page 283

The LoRa transmitter side program called BOSS
We will complete the busy communications program. We start from what is described in
the previous chapter.

The listing includes the essential components allowing LoRa transmission from the ESP32
card marked BOSS.

We simply add a few simple definitions to remotely execute the switching on and off of
the LEDs which are on the card marked SLAV1 :

\55 constant LoRaBOSS
39 constant LoRaSLAV1
\ 40 constant LoRaSLAV2

: toSLAV1 (addr len --)
emptyRX
typeToLoRa
LoRaSLAV1 ATsend
typeToTerm
;

: REDhigh (--)
s" LEDred high" toSLAV1
;

:REDlow(--)
s" LEDred low" toSLAV1
;

: YELLOWhigh (--)
s" ledYELLOW high" toSLAV1
;

: YELLOW low (--)
s" ledYELLOW low" toSLAV1

Page 284

;

: GREENhigh (--)
s"ledGREEN high"toSLAV1
;

: GREENlow (--)
s" ledGREEN low" toSLAV1
;\ 55 constant LoRaBOSS
39 constant LoRaSLAV1
\ 40 constant LoRaSLAV2

: toSLAV1 (addr len --)
 emptyRX
 typeToLoRa
 LoRaSLAV1 ATsend
 typeToTerm
 ;

: REDhigh (--)
 s" LEDred high" toSLAV1
 ;

: REDlow (--)
 s" LEDred low" toSLAV1
 ;

: YELLOWhigh (--)
 s" ledYELLOW high" toSLAV1
 ;

: YELLOWlow (--)
 s" ledYELLOW low" toSLAV1
 ;

: GREENhigh (--)
 s" ledGREEN high" toSLAV1
 ;

: GREENlow (--)
 s" ledGREEN low" toSLAV1
 ;

We create a definition per command, with the aim of making it as simple as possible. You
are free to create a more interactive way. This is not the purpose of this chapter. For the
moment, once the card marked BOSS is connected and the code compiled, if we want to
transmit a command to SLAV1 , we simply type in the terminal:

serial2.init
REDhigh

LEDred high message to SLAV1 . The last phase will be to execute this command as if it
were typed from a terminal connected to SLAV1 .

Page 285

Receipt and execution of FORTH commands by SLAV1
Let's summarize: the BOSS transmitter sends a message, for example LEDred high to
the SLAV1 transmitter. Transmitter SLAV1 receives the message and executes RXdecode
to store this FORTH command in the alphanumeric variable RCVdata .

 x "LEDred high" x
 | |
+-----+-+ +-----+-+
| BOSS | | SLAV1 |
+-------+ +-------+
 | RXdecode
 +-----> RXdata: LEDred high

Executing a command received by LoRa

In our diagram, we have two ESP32 boards, each with a LoRa transmitter:

 BOSS (address 55) which transmits FORTH commands

 SLAV1 (address 39) which receives these FORTH commands

The only difference with FORTH commands entered directly on the PC keyboard and
transmitted by the terminal program connected to SLAV1 concerns the commands
transmitted by LoRa and stored in RXdata.

How to execute these commands stored in Rxdata? The answer is shockingly simple :

RCVdata evaluate

We absolutely do not need anything else TO INTERFACE the LoRa transmission with any
program embedded in an ESP32 board!!!

Here is a secure definition of this interfacing:

: RXinterface (--)
 RCVdata ?dup if
 evaluate
 else
 2drop
 then
 ;

Here are some manipulations in FORTH to test this interface:

LEDinit \ initialize GPIOs
s" LEDred high" RCVdata $!
RCVdata RXinterface \ turn RED led on
s" LEDred low" RCVdata $!
RCVdata RXinterface \ turn RED led off

We kept our promise : to act from LoRa on any program without changing a single line of
code.

Page 286

In any ESP32 card, you can easily compile and test all the functionalities of your programs
with the terminal.

To interface these programs, it will then be enough to add the LoRa transmission layer
and its interfacing code.

The remote transmitter will only have to send FORTH commands to act on your programs.

Only the FORTH language allows such a simple transmission -> application interface!

Now let's see the last point: regularly reading the receive buffer of the LoRa transmitter....

LoRa transmission management loop
The LoRa transmitter is connected to the UART2 serial port. When a transmission is
received, the word Serial2.available indicates the number of bytes waiting in the
UART2 serial buffer. If there is no transmission, the value reported by
Serial2.available will be zero. Here is the code to test for the presence of characters
received by UART2:

Serial
\ final loop
: LoRaLoop (--)
 begin
 Serial2.available \ not 0 if chars availalble
 if
 100 ms \ ensures that the entire transmission is
received
 LoRaRX maxlen$ nip
 Serial2.readBytes
 LoRaRX drop cell - !
 RXdecode \ analyse content of LoRa message
 RXinterface \ interpret content or RCVdata
 then
 pause \ skip to next task
 again
 ;

Page 287

LoRaLoop code uses an infinite loop. It is not recommended to execute this word as is. If
you do this, you will no longer have control of the FORTH interpreter of ESP32Forth.

To use LoRaLoop without blocking the FORTH interpreter, we will define a new my-loop
task like this :

' LoRaLoop 100 100 task my-loop
my-loop start-task

From this moment on, any transmission made from the card marked BOSS will be
interpreted on this card marked SLAV1 .

So that all our programming remains persistent in our SLAV1 card , we finalize the
general initialization :

\ 115200 speed communication for LoRa REYAX
115200 value #SERIAL2_RATE

Serial
: mainInit (--)
 cr ." Starting SLAV1 LoRa" cr
 LEDinit
 #SERIAL2_RATE Serial2.begin \ initialise Serial2
 my-loop start-task
 ;
startup: mainInit

From this moment, once the program has been compiled in the ESP32 card marked SLAV1
, when the card is restarted, the word mainInit will be executed, which is confirmed by the
Starting SLAV1 LoRa message which should normally be displayed.

Here is a photo of the actions performed from the BOSS card, inset at the bottom left :

Page 288

On the card marked SLAV1 , the LEDs react with a latency of one to two seconds. This
delay is normal. It results from the LoRa protocol which is certainly slow, but extremely
robust. In the photo above, the tests were carried out with a distance of one meter. The
BOSS and SLAV1 cards were brought together for the photo.

If you leave SLAV1 connected to the terminal, you will still have control of the FORTH
interpreter. This is also normal! The LoRaLoop word executes in multi-tasking.

Since its origins, the FORTH language has been multitasking. It was already on versions
under MS-DOS when MS-DOS was not multitasking.

With ESP32Forth, we continue with the functionalities of FORTH, including the possibilities
of activating concurrent tasks. In our specific case, the monitor task gives you control over
the interpreter while managing the LEDs from the LoRaLoop task.

Page 289

ESP32Forth simple WEB interface
Author : Vaclav POSELT

I restarted Forth usage after years out of any programming with FlashFORTH on Atmega
328 and Arduino. After creating my first construction it was necessary to build some
control panel for electronics, some buttons, display aso. I have thought there is time of
IoT and wireless control, so better spare construction work and control all wireless. For
this I moved to ESP32 with WiFi and BT, I have found tens of program examples of web
interfaces in Arduino C with JavaScript, but nothing in ESP32Forth on ESP32. For me as
beginner it was problem.

So next is result of my effort - simple example of web interface, on web server running on
ESP32 inForth. Code is based on Peter Forth example peter-webpage-dht11-graphic-
example.txt. Whole code is in attached file example_web.fs., line numbers are from this
file.

Web server runs on ESP32 board with activated WiFi connection and responds to client
(browser on PC, mobile etc.) requests.

So basic web interface is simple:

: runpage begin handleClient if serve-page 100 ms then 500 ms again ;

where handleClient detects if there are client requests, resolves request and gives
HTML content to client with word serve-page. This ms delays improved wifi connection
stability in my home net.

: serve-page (--) \ simple parsing and action of client respond

 path s" /" str= if

 htmlpagesend exit \ exit leaves from serve-page

 then

 path s" /26/on" str= if

 cr ." ACTION for /26/on " cr \ here put action word

 0 to GPIO26 htmlpagesend exit

 then

 path s" /26/off" str= if

 cr ." ACTION for /26/off " cr

 1 to GPIO26 htmlpagesend exit

 then

 path s" /27/on" str= if

 cr ." ACTION for /27/on " cr

 0 to GPIO27 htmlpagesend exit

 then

 path s" /27/off" str= if

 cr ." ACTION for /27/off " cr

 1 to GPIO27 htmlpagesend exit

Page 290

 then

 path respond \ actions for html forms

 htmlpagesend exit \ resend html page

 ;

The word serve-page uses text of client request from word path in form addr len and
compares it with possible client responds, each match activates relevant action and
refreshes HTML page content with word htmlpagesend. Action word(s) can be put instead
of substitutes as is ." ACTION for /26/on " aso.

: htmlpagesend \ send whole html page

 s" text/html" ok-response

 htmlpage \ create html page in webintstream buffer

 webcontent send \ and send it to client

 ;

The word htmlpagesend sends back to client (browser) at first status code and type of
html data. Next is dynamically created html page code in form of text and finally sent to
client to show it in browser.

This is whole process in the nutshell.

Next in more detail.

For practical usage I focused to three types of information generated by ESP32 web
interface:

• simple passive text data such as results of some measuring, for example from
weather station

• buttons for on/off switching to control something by ESP32 circuit

• HTML forms for adjusting some parameters in program running on ESP32.

For this I created this simple example of web page generated on ESP32 with IP address
92.168.1.6.

Page 291

So text GPIO 26 status is: is text info and value 0 or 1 is value of forth value GPIO26
included to web page during HTML page generation.

Buttons GPIO26 and GPIO27 can switch appropriate forth value to control something, for
ex. relay connected to ESP32 GPIOs.

The rest HTML forms can control more advanced adjusting of forth program parameters.

The last Click me to display… is only generating actual date/time info of client browser
without any program connection to ESP32forth code.

You will find the example_web.fs script in the ESP32forth-book.zip file available
here :
https://github.com/MPETREMANN11/ESP32forth/blob/main/__documentation/
ESP32forth-book.zip

Next only in brief:

Lines 8 to 29 create helping word mvbar, used as mvbar any multi line text | to create
temporary string as addr len across more lines of text.

Page 292

Figure 18: web page generated by ESP32forth

https://github.com/MPETREMANN11/ESP32forth/blob/main/__documentation/ESP32forth-book.zip
https://github.com/MPETREMANN11/ESP32forth/blob/main/__documentation/ESP32forth-book.zip

Buffer for HTML page text is created on line 31 by stream webintstream and uses word
>stream to add text parts together.

Long word htmlpage on lines 46 to 135 dynamically creates html text after each
activation. Lines 67 to 71 create text with actual values of forth values GPIO26, GPIO27. If
it is used to show some measured values continually it is necessary to put code for auto
refresh of html page into generated html code.

Lines 72 to 88 create buttons in color red or green depending on GPIO values with client
info /26/on or /26/off for detection in serve-page word.

Lines 91 to 127 generate html forms data for adjustment of some values as data, time,
text or range. Lines 128 to 131 are only generating actual date/time info with JavaScript
code.

In the end of code there is activation of server with wifi and start of webinterface as task
on background.

I present this code as base for experiments. I am sure it is possible to improve it,
comments are welcome.

Page 293

Detailed content of ESP32forth vocabularies
ESP32forth provides numerous vocabularies:

 FORTH is the main vocabulary;

 certain vocabularies are used for internal mechanics for ESP32Forth, such as
internals , asm…

 many vocabularies allow the management of specific ports or accessories, such as
bluetooth , oled , spi , wifi , wire…

Here you will find the list of all the words defined in these different vocabularies. Some
words are presented with a colored link:

is an ordinary FORTH word;

is definition word;

marks a control structure;

is a deferred execution word;

is a word defined by constant , variable or value ;

marks a vocabulary.

FORTH vocabulary words are displayed in alphabetical order. For other vocabularies, the
words are presented in their display order.

Version v 7.0.7.15

FORTH
- -rot , ; : :noname !

? ?do ?dup . ." .s '

(local) [['] [char] [ELSE] [IF] [THEN]

] { { }transfer @ * */

*/MOD / /mod # #! #> #fs

#s #tib + +! +loop +to <

<# <= <> = > >= >BODY

>flags >flags& >in >link >link& >name >params

>R >size 0< 0<> 0= 1- 1/F

1+ 2! 2@ 2* 2/ 2drop 2dup

4* 4/ abort abort" abs accept adc

afliteral aft again ahead align aligned allocate

allot also analogRead AND ansi ARSHIFT asm

assert at-xy base begin bg BIN binary

bl blank block block-fid block-id buffer bye

c, C! C@ CASE cat catch CELL

Page 294

https://esp32.arduino-forth.com/help/index-esp32/word/CELL
https://esp32.arduino-forth.com/help/index-esp32/word/catch
https://esp32.arduino-forth.com/help/index-esp32/word/cat
https://esp32.arduino-forth.com/help/index-esp32/word/CASE
https://esp32.arduino-forth.com/help/index-esp32/word/C@
https://esp32.arduino-forth.com/help/index-esp32/word/C!
https://esp32.arduino-forth.com/help/index-esp32/word/c%2C
https://esp32.arduino-forth.com/help/index-esp32/word/bye
https://esp32.arduino-forth.com/help/index-esp32/word/buffer
https://esp32.arduino-forth.com/help/index-esp32/word/block-id
https://esp32.arduino-forth.com/help/index-esp32/word/block-fid
https://esp32.arduino-forth.com/help/index-esp32/word/block
https://esp32.arduino-forth.com/help/index-esp32/word/blank
https://esp32.arduino-forth.com/help/index-esp32/word/bl
https://esp32.arduino-forth.com/help/index-esp32/word/binary
https://esp32.arduino-forth.com/help/index-esp32/word/BIN
https://esp32.arduino-forth.com/help/index-esp32/word/bg
https://esp32.arduino-forth.com/help/index-esp32/word/begin
https://esp32.arduino-forth.com/help/index-esp32/word/base
https://esp32.arduino-forth.com/help/index-esp32/word/at-xy
https://esp32.arduino-forth.com/help/index-esp32/word/assert
https://esp32.arduino-forth.com/help/index-esp32/word/asm
https://esp32.arduino-forth.com/help/index-esp32/word/ARSHIFT
https://esp32.arduino-forth.com/help/index-esp32/word/ansi
https://esp32.arduino-forth.com/help/index-esp32/word/AND
https://esp32.arduino-forth.com/help/index-esp32/word/analogRead
https://esp32.arduino-forth.com/help/index-esp32/word/also
https://esp32.arduino-forth.com/help/index-esp32/word/allot
https://esp32.arduino-forth.com/help/index-esp32/word/aligned
https://esp32.arduino-forth.com/help/index-esp32/word/align
https://esp32.arduino-forth.com/help/index-esp32/word/again
https://esp32.arduino-forth.com/help/index-esp32/word/aft
https://esp32.arduino-forth.com/help/index-esp32/word/afliteral
https://esp32.arduino-forth.com/help/index-esp32/word/adc
https://esp32.arduino-forth.com/help/index-esp32/word/accept
https://esp32.arduino-forth.com/help/index-esp32/word/abs
https://esp32.arduino-forth.com/help/index-esp32/word/abort
https://esp32.arduino-forth.com/help/index-esp32/word/4%2F
https://esp32.arduino-forth.com/help/index-esp32/word/4*
https://esp32.arduino-forth.com/help/index-esp32/word/2dup
https://esp32.arduino-forth.com/help/index-esp32/word/2drop
https://esp32.arduino-forth.com/help/index-esp32/word/2%2F
https://esp32.arduino-forth.com/help/index-esp32/word/2*
https://esp32.arduino-forth.com/help/index-esp32/word/2@
https://esp32.arduino-forth.com/help/index-esp32/word/2!
https://esp32.arduino-forth.com/help/index-esp32/word/1%2B
https://esp32.arduino-forth.com/help/index-esp32/word/1%2FF
https://esp32.arduino-forth.com/help/index-esp32/word/1-
https://esp32.arduino-forth.com/help/index-esp32/word/0%3D
https://esp32.arduino-forth.com/help/index-esp32/word/0%3C%3E
https://esp32.arduino-forth.com/help/index-esp32/word/0%3C
https://esp32.arduino-forth.com/help/index-esp32/word/%3ER
https://esp32.arduino-forth.com/help/index-esp32/word/%3Ename
https://esp32.arduino-forth.com/help/index-esp32/word/%3Elink%26
https://esp32.arduino-forth.com/help/index-esp32/word/%3Elink
https://esp32.arduino-forth.com/help/index-esp32/word/%3Ein
https://esp32.arduino-forth.com/help/index-esp32/word/%3Eflags
https://esp32.arduino-forth.com/help/index-esp32/word/%3EBODY
https://esp32.arduino-forth.com/help/index-esp32/word/%3E%3D
https://esp32.arduino-forth.com/help/index-esp32/word/%3E
https://esp32.arduino-forth.com/help/index-esp32/word/%3D
https://esp32.arduino-forth.com/help/index-esp32/word/%3C%3E
https://esp32.arduino-forth.com/help/index-esp32/word/%3C%3D
https://esp32.arduino-forth.com/help/index-esp32/word/%3C%23
https://esp32.arduino-forth.com/help/index-esp32/word/%3C
https://esp32.arduino-forth.com/help/index-esp32/word/%2Bto
https://esp32.arduino-forth.com/help/index-esp32/word/%2Bloop
https://esp32.arduino-forth.com/help/index-esp32/word/%2B!
https://esp32.arduino-forth.com/help/index-esp32/word/%2B
https://esp32.arduino-forth.com/help/index-esp32/word/%23tib
https://esp32.arduino-forth.com/help/index-esp32/word/%23s
https://esp32.arduino-forth.com/help/index-esp32/word/%23fs
https://esp32.arduino-forth.com/help/index-esp32/word/%23%3E
https://esp32.arduino-forth.com/help/index-esp32/word/%23!
https://esp32.arduino-forth.com/help/index-esp32/word/%23
https://esp32.arduino-forth.com/help/index-esp32/word/%2Fmod
https://esp32.arduino-forth.com/help/index-esp32/word/%2F
https://esp32.arduino-forth.com/help/index-esp32/word/*%2FMOD
https://esp32.arduino-forth.com/help/index-esp32/word/*%2F
https://esp32.arduino-forth.com/help/index-esp32/word/*
https://esp32.arduino-forth.com/help/index-esp32/word/@
https://esp32.arduino-forth.com/help/index-esp32/word/%7B
https://esp32.arduino-forth.com/help/index-esp32/word/%7B
https://esp32.arduino-forth.com/help/index-esp32/word/%5D
https://esp32.arduino-forth.com/help/index-esp32/word/%5BTHEN%5D
https://esp32.arduino-forth.com/help/index-esp32/word/%5BIF%5D
https://esp32.arduino-forth.com/help/index-esp32/word/%5BELSE%5D
https://esp32.arduino-forth.com/help/index-esp32/word/%5Bchar%5D
https://esp32.arduino-forth.com/help/index-esp32/word/%5B'%5D
https://esp32.arduino-forth.com/help/index-esp32/word/%5B
https://esp32.arduino-forth.com/help/index-esp32/word/(local)
https://esp32.arduino-forth.com/help/index-esp32/word/'
https://esp32.arduino-forth.com/help/index-esp32/word/.s
https://esp32.arduino-forth.com/help/index-esp32/word/.%22
https://esp32.arduino-forth.com/help/index-esp32/word/
https://esp32.arduino-forth.com/help/index-esp32/word/%3Fdup
https://esp32.arduino-forth.com/help/index-esp32/word/%3Fdo
https://esp32.arduino-forth.com/help/index-esp32/word/%3F
https://esp32.arduino-forth.com/help/index-esp32/word/!
https://esp32.arduino-forth.com/help/index-esp32/word/%3Anoname
https://esp32.arduino-forth.com/help/index-esp32/word/%3A
https://esp32.arduino-forth.com/help/index-esp32/word/%3B
https://esp32.arduino-forth.com/help/index-esp32/word/%2C
https://esp32.arduino-forth.com/help/index-esp32/word/-rot
https://esp32.arduino-forth.com/help/index-esp32/word/-

cell/ cell+ cells char CLOSE-DIR CLOSE-FILE cmove

cmove> CONSTANT context copy cp cr CREATE

CREATE-FILE current dacWrite decimal default-key default-key?

default-type default-use defer DEFINED? definitions DELETE-FILE

depth digitalRead digitalWrite do DOES> DROP

dump dump-file DUP duty echo editor else

emit empty-buffers ENDCASE ENDOF erase ESP

ESP32-C3? ESP32-S2? ESP32-S3? ESP32? evaluate EXECUTE exit

extract F- f. f.s F* F** F/

F+ F< F<= F<> F= F> F>=

F>S F0< F0= FABS FATAN2 fconstant FCOS

fdepth FDROP FDUP FEXP fg file-exists?

FILE-POSITION FILE-SIZE fill FIND fliteral FLN

FLOOR flush FLUSH-FILE FMAX FMIN FNEGATE FNIP

for forget FORTH forth-builtins FOVER FP!

FP@ fp0 free freq FROT FSIN FSINCOS

FSQRT FSWAP fvariable handler here hex HIGH

hld hold httpd I if IMMEDIATE include

included included? INPUT internals invert is J

K key key? L! latestxt leave LED

ledc list literal load login loop LOW

ls LSHIFT max MDNS.begin min mod ms

MS-TICKS mv n. needs negate nest-depth next

nip nl NON-BLOCK normal octal OF ok

only open-blocks OPEN-DIR OPEN-FILE OR order OUTPUT

OVER pad page PARSE pause PI pin

pinMode postpone precision previous prompt PSRAM? pulseIn

quit r" R@ R/O R/W R> r|

r~ rdrop read-dir READ-FILE recurse refill registers

remaining remember RENAME-FILE repeat REPOSITION-FILE required

reset resize RESIZE-FILE restore revive RISC-V? rm

rot RP! RP@ rp0 RSHIFT rtos s"

S>F s>z save save-buffers scr SD

SD_MMC sealed see Serial set-precision set-title

sf, SF! SF@ SFLOAT SFLOAT+ SFLOATS sign

SL@ sockets SP! SP@ sp0 space spaces

SPIFFS start-task startswith? startup: state str str=

streams structures SW@ SWAP task tasks telnetd

terminate then throw thru tib to tone

touch transfer transfer type u. U/MOD UL@

UNLOOP until update use used UW@ value

VARIABLE visual vlist vocabulary W! W/O web-
interface

webui while WiFi Wire words WRITE-FILE XOR

Xtensa? z" z>s

asm
xtensa disasm disasm1 matchit address istep sextend m. m@ for-ops op >operands

>mask >pattern >length >xt op-snap opcodes coden, names operand l o bits

bit skip advance advance-operand reset reset-operand for-operands operands

>printop >inop >next >opmask& bit! mask pattern length demask enmask >>1

Page 295

https://esp32.arduino-forth.com/help/index-esp32/word/%3E%3E1
https://esp32.arduino-forth.com/help/index-esp32/word/reset
https://esp32.arduino-forth.com/help/index-esp32/word/names
https://esp32.arduino-forth.com/help/index-esp32/word/m@
https://esp32.arduino-forth.com/help/index-esp32/word/disasm
https://esp32.arduino-forth.com/help/index-esp32/word/xtensa
https://esp32.arduino-forth.com/help/index-esp32/word/z%3Es
https://esp32.arduino-forth.com/help/index-esp32/word/z%22
https://esp32.arduino-forth.com/help/index-esp32/word/Xtensa%3F
https://esp32.arduino-forth.com/help/index-esp32/word/XOR
https://esp32.arduino-forth.com/help/index-esp32/word/WRITE-FILE
https://esp32.arduino-forth.com/help/index-esp32/word/words
https://esp32.arduino-forth.com/help/index-esp32/word/Wire
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi
https://esp32.arduino-forth.com/help/index-esp32/word/while
https://esp32.arduino-forth.com/help/index-esp32/word/webui
https://esp32.arduino-forth.com/help/index-esp32/word/web-interface
https://esp32.arduino-forth.com/help/index-esp32/word/web-interface
https://esp32.arduino-forth.com/help/index-esp32/word/W%2FO
https://esp32.arduino-forth.com/help/index-esp32/word/vocabulary
https://esp32.arduino-forth.com/help/index-esp32/word/vlist
https://esp32.arduino-forth.com/help/index-esp32/word/visual
https://esp32.arduino-forth.com/help/index-esp32/word/VARIABLE
https://esp32.arduino-forth.com/help/index-esp32/word/value
https://esp32.arduino-forth.com/help/index-esp32/word/UW@
https://esp32.arduino-forth.com/help/index-esp32/word/used
https://esp32.arduino-forth.com/help/index-esp32/word/use
https://esp32.arduino-forth.com/help/index-esp32/word/update
https://esp32.arduino-forth.com/help/index-esp32/word/until
https://esp32.arduino-forth.com/help/index-esp32/word/UNLOOP
https://esp32.arduino-forth.com/help/index-esp32/word/UL@
https://esp32.arduino-forth.com/help/index-esp32/word/U%2FMOD
https://esp32.arduino-forth.com/help/index-esp32/word/u.
https://esp32.arduino-forth.com/help/index-esp32/word/type
https://esp32.arduino-forth.com/help/index-esp32/word/touch
https://esp32.arduino-forth.com/help/index-esp32/word/tone
https://esp32.arduino-forth.com/help/index-esp32/word/to
https://esp32.arduino-forth.com/help/index-esp32/word/tib
https://esp32.arduino-forth.com/help/index-esp32/word/thru
https://esp32.arduino-forth.com/help/index-esp32/word/throw
https://esp32.arduino-forth.com/help/index-esp32/word/then
https://esp32.arduino-forth.com/help/index-esp32/word/telnetd
https://esp32.arduino-forth.com/help/index-esp32/word/tasks
https://esp32.arduino-forth.com/help/index-esp32/word/task
https://esp32.arduino-forth.com/help/index-esp32/word/SWAP
https://esp32.arduino-forth.com/help/index-esp32/word/structures
https://esp32.arduino-forth.com/help/index-esp32/word/streams
https://esp32.arduino-forth.com/help/index-esp32/word/str%3D
https://esp32.arduino-forth.com/help/index-esp32/word/str
https://esp32.arduino-forth.com/help/index-esp32/word/state
https://esp32.arduino-forth.com/help/index-esp32/word/startup%3A
https://esp32.arduino-forth.com/help/index-esp32/word/start-task
https://esp32.arduino-forth.com/help/index-esp32/word/SPIFFS
https://esp32.arduino-forth.com/help/index-esp32/word/spaces
https://esp32.arduino-forth.com/help/index-esp32/word/space
https://esp32.arduino-forth.com/help/index-esp32/word/sp0
https://esp32.arduino-forth.com/help/index-esp32/word/SP@
https://esp32.arduino-forth.com/help/index-esp32/word/sockets
https://esp32.arduino-forth.com/help/index-esp32/word/SFLOATS
https://esp32.arduino-forth.com/help/index-esp32/word/SFLOAT%2B
https://esp32.arduino-forth.com/help/index-esp32/word/SFLOAT
https://esp32.arduino-forth.com/help/index-esp32/word/SF@
https://esp32.arduino-forth.com/help/index-esp32/word/SF!
https://esp32.arduino-forth.com/help/index-esp32/word/sf%2C
https://esp32.arduino-forth.com/help/index-esp32/word/set-precision
https://esp32.arduino-forth.com/help/index-esp32/word/Serial
https://esp32.arduino-forth.com/help/index-esp32/word/see
https://esp32.arduino-forth.com/help/index-esp32/word/SD_MMC
https://esp32.arduino-forth.com/help/index-esp32/word/SD
https://esp32.arduino-forth.com/help/index-esp32/word/scr
https://esp32.arduino-forth.com/help/index-esp32/word/save-buffers
https://esp32.arduino-forth.com/help/index-esp32/word/save
https://esp32.arduino-forth.com/help/index-esp32/word/s%3Ez
https://esp32.arduino-forth.com/help/index-esp32/word/S%3EF
https://esp32.arduino-forth.com/help/index-esp32/word/s%22
https://esp32.arduino-forth.com/help/index-esp32/word/rtos
https://esp32.arduino-forth.com/help/index-esp32/word/RSHIFT
https://esp32.arduino-forth.com/help/index-esp32/word/rp0
https://esp32.arduino-forth.com/help/index-esp32/word/rot
https://esp32.arduino-forth.com/help/index-esp32/word/rm
https://esp32.arduino-forth.com/help/index-esp32/word/RISC-V%3F
https://esp32.arduino-forth.com/help/index-esp32/word/revive
https://esp32.arduino-forth.com/help/index-esp32/word/restore
https://esp32.arduino-forth.com/help/index-esp32/word/RESIZE-FILE
https://esp32.arduino-forth.com/help/index-esp32/word/reset
https://esp32.arduino-forth.com/help/index-esp32/word/required
https://esp32.arduino-forth.com/help/index-esp32/word/REPOSITION-FILE
https://esp32.arduino-forth.com/help/index-esp32/word/repeat
https://esp32.arduino-forth.com/help/index-esp32/word/remember
https://esp32.arduino-forth.com/help/index-esp32/word/remaining
https://esp32.arduino-forth.com/help/index-esp32/word/registers
https://esp32.arduino-forth.com/help/index-esp32/word/recurse
https://esp32.arduino-forth.com/help/index-esp32/word/READ-FILE
https://esp32.arduino-forth.com/help/index-esp32/word/rdrop
https://esp32.arduino-forth.com/help/index-esp32/word/r%7C
https://esp32.arduino-forth.com/help/index-esp32/word/R%3E
https://esp32.arduino-forth.com/help/index-esp32/word/R%2FW
https://esp32.arduino-forth.com/help/index-esp32/word/R%2FO
https://esp32.arduino-forth.com/help/index-esp32/word/R@
https://esp32.arduino-forth.com/help/index-esp32/word/r%22
https://esp32.arduino-forth.com/help/index-esp32/word/PSRAM%3F
https://esp32.arduino-forth.com/help/index-esp32/word/prompt
https://esp32.arduino-forth.com/help/index-esp32/word/precision
https://esp32.arduino-forth.com/help/index-esp32/word/pinMode
https://esp32.arduino-forth.com/help/index-esp32/word/pin
https://esp32.arduino-forth.com/help/index-esp32/word/PI
https://esp32.arduino-forth.com/help/index-esp32/word/pause
https://esp32.arduino-forth.com/help/index-esp32/word/PARSE
https://esp32.arduino-forth.com/help/index-esp32/word/page
https://esp32.arduino-forth.com/help/index-esp32/word/OVER
https://esp32.arduino-forth.com/help/index-esp32/word/OUTPUT
https://esp32.arduino-forth.com/help/index-esp32/word/order
https://esp32.arduino-forth.com/help/index-esp32/word/OR
https://esp32.arduino-forth.com/help/index-esp32/word/OPEN-FILE
https://esp32.arduino-forth.com/help/index-esp32/word/open-blocks
https://esp32.arduino-forth.com/help/index-esp32/word/only
https://esp32.arduino-forth.com/help/index-esp32/word/ok
https://esp32.arduino-forth.com/help/index-esp32/word/OF
https://esp32.arduino-forth.com/help/index-esp32/word/octal
https://esp32.arduino-forth.com/help/index-esp32/word/normal
https://esp32.arduino-forth.com/help/index-esp32/word/nl
https://esp32.arduino-forth.com/help/index-esp32/word/nip
https://esp32.arduino-forth.com/help/index-esp32/word/next
https://esp32.arduino-forth.com/help/index-esp32/word/negate
https://esp32.arduino-forth.com/help/index-esp32/word/n.
https://esp32.arduino-forth.com/help/index-esp32/word/mv
https://esp32.arduino-forth.com/help/index-esp32/word/MS-TICKS
https://esp32.arduino-forth.com/help/index-esp32/word/ms
https://esp32.arduino-forth.com/help/index-esp32/word/mod
https://esp32.arduino-forth.com/help/index-esp32/word/min
https://esp32.arduino-forth.com/help/index-esp32/word/MDNS.begin
https://esp32.arduino-forth.com/help/index-esp32/word/max
https://esp32.arduino-forth.com/help/index-esp32/word/LSHIFT
https://esp32.arduino-forth.com/help/index-esp32/word/ls
https://esp32.arduino-forth.com/help/index-esp32/word/LOW
https://esp32.arduino-forth.com/help/index-esp32/word/loop
https://esp32.arduino-forth.com/help/index-esp32/word/login
https://esp32.arduino-forth.com/help/index-esp32/word/load
https://esp32.arduino-forth.com/help/index-esp32/word/literal
https://esp32.arduino-forth.com/help/index-esp32/word/list
https://esp32.arduino-forth.com/help/index-esp32/word/ledc
https://esp32.arduino-forth.com/help/index-esp32/word/LED
https://esp32.arduino-forth.com/help/index-esp32/word/leave
https://esp32.arduino-forth.com/help/index-esp32/word/latestxt
https://esp32.arduino-forth.com/help/index-esp32/word/L!
https://esp32.arduino-forth.com/help/index-esp32/word/key%3F
https://esp32.arduino-forth.com/help/index-esp32/word/key
https://esp32.arduino-forth.com/help/index-esp32/word/K
https://esp32.arduino-forth.com/help/index-esp32/word/J
https://esp32.arduino-forth.com/help/index-esp32/word/is
https://esp32.arduino-forth.com/help/index-esp32/word/invert
https://esp32.arduino-forth.com/help/index-esp32/word/internals
https://esp32.arduino-forth.com/help/index-esp32/word/INPUT
https://esp32.arduino-forth.com/help/index-esp32/word/included%3F
https://esp32.arduino-forth.com/help/index-esp32/word/included
https://esp32.arduino-forth.com/help/index-esp32/word/include
https://esp32.arduino-forth.com/help/index-esp32/word/IMMEDIATE
https://esp32.arduino-forth.com/help/index-esp32/word/if
https://esp32.arduino-forth.com/help/index-esp32/word/I
https://esp32.arduino-forth.com/help/index-esp32/word/httpd
https://esp32.arduino-forth.com/help/index-esp32/word/hold
https://esp32.arduino-forth.com/help/index-esp32/word/hld
https://esp32.arduino-forth.com/help/index-esp32/word/HIGH
https://esp32.arduino-forth.com/help/index-esp32/word/hex
https://esp32.arduino-forth.com/help/index-esp32/word/here
https://esp32.arduino-forth.com/help/index-esp32/word/handler
https://esp32.arduino-forth.com/help/index-esp32/word/fvariable
https://esp32.arduino-forth.com/help/index-esp32/word/FSWAP
https://esp32.arduino-forth.com/help/index-esp32/word/FSQRT
https://esp32.arduino-forth.com/help/index-esp32/word/FSINCOS
https://esp32.arduino-forth.com/help/index-esp32/word/FSIN
https://esp32.arduino-forth.com/help/index-esp32/word/freq
https://esp32.arduino-forth.com/help/index-esp32/word/free
https://esp32.arduino-forth.com/help/index-esp32/word/fp0
https://esp32.arduino-forth.com/help/index-esp32/word/FP@
https://esp32.arduino-forth.com/help/index-esp32/word/FOVER
https://esp32.arduino-forth.com/help/index-esp32/word/forth-builtins
https://esp32.arduino-forth.com/help/index-esp32/word/FORTH
https://esp32.arduino-forth.com/help/index-esp32/word/forget
https://esp32.arduino-forth.com/help/index-esp32/word/for
https://esp32.arduino-forth.com/help/index-esp32/word/FNIP
https://esp32.arduino-forth.com/help/index-esp32/word/FNEGATE
https://esp32.arduino-forth.com/help/index-esp32/word/FMIN
https://esp32.arduino-forth.com/help/index-esp32/word/FMAX
https://esp32.arduino-forth.com/help/index-esp32/word/FLUSH-FILE
https://esp32.arduino-forth.com/help/index-esp32/word/flush
https://esp32.arduino-forth.com/help/index-esp32/word/FLOOR
https://esp32.arduino-forth.com/help/index-esp32/word/FLN
https://esp32.arduino-forth.com/help/index-esp32/word/fliteral
https://esp32.arduino-forth.com/help/index-esp32/word/FIND
https://esp32.arduino-forth.com/help/index-esp32/word/fill
https://esp32.arduino-forth.com/help/index-esp32/word/FILE-SIZE
https://esp32.arduino-forth.com/help/index-esp32/word/FILE-POSITION
https://esp32.arduino-forth.com/help/index-esp32/word/file-exists%3F
https://esp32.arduino-forth.com/help/index-esp32/word/fg
https://esp32.arduino-forth.com/help/index-esp32/word/FEXP
https://esp32.arduino-forth.com/help/index-esp32/word/FDUP
https://esp32.arduino-forth.com/help/index-esp32/word/FDROP
https://esp32.arduino-forth.com/help/index-esp32/word/fdepth
https://esp32.arduino-forth.com/help/index-esp32/word/FCOS
https://esp32.arduino-forth.com/help/index-esp32/word/fconstant
https://esp32.arduino-forth.com/help/index-esp32/word/FATAN2
https://esp32.arduino-forth.com/help/index-esp32/word/FABS
https://esp32.arduino-forth.com/help/index-esp32/word/F0%3D
https://esp32.arduino-forth.com/help/index-esp32/word/F0%3C
https://esp32.arduino-forth.com/help/index-esp32/word/F%3ES
https://esp32.arduino-forth.com/help/index-esp32/word/F%3E%3D
https://esp32.arduino-forth.com/help/index-esp32/word/F%3E
https://esp32.arduino-forth.com/help/index-esp32/word/F%3D
https://esp32.arduino-forth.com/help/index-esp32/word/F%3C%3E
https://esp32.arduino-forth.com/help/index-esp32/word/F%3C%3D
https://esp32.arduino-forth.com/help/index-esp32/word/F%3C
https://esp32.arduino-forth.com/help/index-esp32/word/F%2B
https://esp32.arduino-forth.com/help/index-esp32/word/F%2F
https://esp32.arduino-forth.com/help/index-esp32/word/F**
https://esp32.arduino-forth.com/help/index-esp32/word/F*
https://esp32.arduino-forth.com/help/index-esp32/word/f.s
https://esp32.arduino-forth.com/help/index-esp32/word/f.
https://esp32.arduino-forth.com/help/index-esp32/word/F-
https://esp32.arduino-forth.com/help/index-esp32/word/extract
https://esp32.arduino-forth.com/help/index-esp32/word/exit
https://esp32.arduino-forth.com/help/index-esp32/word/EXECUTE
https://esp32.arduino-forth.com/help/index-esp32/word/evaluate
https://esp32.arduino-forth.com/help/index-esp32/word/ESP32%3F
https://esp32.arduino-forth.com/help/index-esp32/word/ESP32-S3%3F
https://esp32.arduino-forth.com/help/index-esp32/word/ESP32-S2%3F
https://esp32.arduino-forth.com/help/index-esp32/word/ESP32-C3%3F
https://esp32.arduino-forth.com/help/index-esp32/word/ESP
https://esp32.arduino-forth.com/help/index-esp32/word/erase
https://esp32.arduino-forth.com/help/index-esp32/word/ENDOF
https://esp32.arduino-forth.com/help/index-esp32/word/ENDCASE
https://esp32.arduino-forth.com/help/index-esp32/word/empty-buffers
https://esp32.arduino-forth.com/help/index-esp32/word/emit
https://esp32.arduino-forth.com/help/index-esp32/word/else
https://esp32.arduino-forth.com/help/index-esp32/word/editor
https://esp32.arduino-forth.com/help/index-esp32/word/echo
https://esp32.arduino-forth.com/help/index-esp32/word/DUP
https://esp32.arduino-forth.com/help/index-esp32/word/dump-file
https://esp32.arduino-forth.com/help/index-esp32/word/dump
https://esp32.arduino-forth.com/help/index-esp32/word/DROP
https://esp32.arduino-forth.com/help/index-esp32/word/DOES%3E
https://esp32.arduino-forth.com/help/index-esp32/word/do
https://esp32.arduino-forth.com/help/index-esp32/word/digitalWrite
https://esp32.arduino-forth.com/help/index-esp32/word/digitalRead
https://esp32.arduino-forth.com/help/index-esp32/word/depth
https://esp32.arduino-forth.com/help/index-esp32/word/DELETE-FILE
https://esp32.arduino-forth.com/help/index-esp32/word/definitions
https://esp32.arduino-forth.com/help/index-esp32/word/DEFINED%3F
https://esp32.arduino-forth.com/help/index-esp32/word/defer
https://esp32.arduino-forth.com/help/index-esp32/word/default-use
https://esp32.arduino-forth.com/help/index-esp32/word/default-type
https://esp32.arduino-forth.com/help/index-esp32/word/default-key%3F
https://esp32.arduino-forth.com/help/index-esp32/word/default-key
https://esp32.arduino-forth.com/help/index-esp32/word/decimal
https://esp32.arduino-forth.com/help/index-esp32/word/dacWrite
https://esp32.arduino-forth.com/help/index-esp32/word/current
https://esp32.arduino-forth.com/help/index-esp32/word/CREATE-FILE
https://esp32.arduino-forth.com/help/index-esp32/word/CREATE
https://esp32.arduino-forth.com/help/index-esp32/word/cr
https://esp32.arduino-forth.com/help/index-esp32/word/cp
https://esp32.arduino-forth.com/help/index-esp32/word/copy
https://esp32.arduino-forth.com/help/index-esp32/word/context
https://esp32.arduino-forth.com/help/index-esp32/word/CONSTANT
https://esp32.arduino-forth.com/help/index-esp32/word/cmove
https://esp32.arduino-forth.com/help/index-esp32/word/CLOSE-FILE
https://esp32.arduino-forth.com/help/index-esp32/word/char
https://esp32.arduino-forth.com/help/index-esp32/word/cells
https://esp32.arduino-forth.com/help/index-esp32/word/cell%2B
https://esp32.arduino-forth.com/help/index-esp32/word/cell%2F

odd? high-bit end-code code, code4, code3, code2, code1, callot chere reserve

code-at code-start

bluetooth

SerialBT.new SerialBT.delete SerialBT.begin SerialBT.end SerialBT.available

SerialBT.readBytes SerialBT.write SerialBT.flush SerialBT.hasClient

SerialBT.enableSSP SerialBT.setPin SerialBT.unpairDevice SerialBT.connect

SerialBT.connectAddr SerialBT.disconnect SerialBT.connected

SerialBT.isReady bluetooth-builtins

editor
a r d e wipe p n l

ESP
getHeapSize getFreeHeap getMaxAllocHeap getChipModel getChipCores getFlashChipSize

getCpuFreqMHz getSketchSize deepSleep getEfuseMac esp_log_level_set ESP-builtins

httpd
notfound-response bad-response ok-response response send path method hasHeader

handleClient read-headers completed? body content-length header crnl= eat

skipover skipto in@<> end< goal# goal strcase= upper server client-cr client-emit

client-read client-type client-len client httpd-port clientfd sockfd body-read

body-1st-read body-chunk body-chunk-size chunk-filled chunk chunk-size

max-connections

insides
run normal-mode raw-mode step ground handle-key quit-edit save load backspace

delete handle-esc insert update crtype cremit ndown down nup up caret length

capacity text start-size fileh filename# filename max-path

internals
assembler-source xtensa-assembler-source MALLOC SYSFREE REALLOC heap_caps_malloc

heap_caps_free heap_caps_realloc heap_caps_get_total_size heap_caps_get_free_size

heap_caps_get_minimum_free_size heap_caps_get_largest_free_block RAW-YIELD

RAW-TERMINATE READDIR CALLCODE CALL0 CALL1 CALL2 CALL3 CALL4 CALL5 CALL6

CALL7 CALL8 CALL9 CALL10 CALL11 CALL12 CALL13 CALL14 CALL15 DOFLIT S>FLOAT?

fill32 'heap 'context 'latestxt 'notfound 'heap-start 'heap-size 'stack-cells

'boot 'boot-size 'tib 'argc 'argv 'runner 'throw-handler NOP BRANCH 0BRANCH

DONEXT DOLIT DOSET DOCOL DOCON DOVAR DOCREATE DODOES ALITERAL LONG-SIZE

S>NUMBER? 'SYS YIELD EVALUATE1 'builtins internals-builtins autoexec

arduino-remember-filename

arduino-default-use esp32-stats serial-key? serial-key serial-type yield-task

yield-step e' @line grow-blocks use?! common-default-use block-data block-dirty

clobber clobber-line include+ path-join included-files raw-included include-file

sourcedirname sourcefilename! sourcefilename sourcefilename# sourcefilename&

Page 296

https://esp32.arduino-forth.com/help/index-esp32/word/sourcefilename%26
https://esp32.arduino-forth.com/help/index-esp32/word/sourcefilename%23
https://esp32.arduino-forth.com/help/index-esp32/word/sourcefilename
https://esp32.arduino-forth.com/help/index-esp32/word/sourcefilename!
https://esp32.arduino-forth.com/help/index-esp32/word/included-files
https://esp32.arduino-forth.com/help/index-esp32/word/block-dirty
https://esp32.arduino-forth.com/help/index-esp32/word/block-data
https://esp32.arduino-forth.com/help/index-esp32/word/common-default-use
https://esp32.arduino-forth.com/help/index-esp32/word/grow-blocks
https://esp32.arduino-forth.com/help/index-esp32/word/serial-type
https://esp32.arduino-forth.com/help/index-esp32/word/serial-key
https://esp32.arduino-forth.com/help/index-esp32/word/serial-key%3F
https://esp32.arduino-forth.com/help/index-esp32/word/esp32-stats
https://esp32.arduino-forth.com/help/index-esp32/word/'SYS
https://esp32.arduino-forth.com/help/index-esp32/word/S%3ENUMBER%3F
https://esp32.arduino-forth.com/help/index-esp32/word/LONG-SIZE
https://esp32.arduino-forth.com/help/index-esp32/word/DOLIT
https://esp32.arduino-forth.com/help/index-esp32/word/DONEXT
https://esp32.arduino-forth.com/help/index-esp32/word/BRANCH
https://esp32.arduino-forth.com/help/index-esp32/word/'tib
https://esp32.arduino-forth.com/help/index-esp32/word/'notfound
https://esp32.arduino-forth.com/help/index-esp32/word/DOFLIT
https://esp32.arduino-forth.com/help/index-esp32/word/update
https://esp32.arduino-forth.com/help/index-esp32/word/load
https://esp32.arduino-forth.com/help/index-esp32/word/save
https://esp32.arduino-forth.com/help/index-esp32/word/max-connections
https://esp32.arduino-forth.com/help/index-esp32/word/chunk-size
https://esp32.arduino-forth.com/help/index-esp32/word/chunk
https://esp32.arduino-forth.com/help/index-esp32/word/chunk-filled
https://esp32.arduino-forth.com/help/index-esp32/word/sockfd
https://esp32.arduino-forth.com/help/index-esp32/word/httpd-port
https://esp32.arduino-forth.com/help/index-esp32/word/client
https://esp32.arduino-forth.com/help/index-esp32/word/client-len
https://esp32.arduino-forth.com/help/index-esp32/word/client-emit
https://esp32.arduino-forth.com/help/index-esp32/word/server
https://esp32.arduino-forth.com/help/index-esp32/word/goal
https://esp32.arduino-forth.com/help/index-esp32/word/goal%23
https://esp32.arduino-forth.com/help/index-esp32/word/header
https://esp32.arduino-forth.com/help/index-esp32/word/body
https://esp32.arduino-forth.com/help/index-esp32/word/handleClient
https://esp32.arduino-forth.com/help/index-esp32/word/hasHeader
https://esp32.arduino-forth.com/help/index-esp32/word/method
https://esp32.arduino-forth.com/help/index-esp32/word/path
https://esp32.arduino-forth.com/help/index-esp32/word/send
https://esp32.arduino-forth.com/help/index-esp32/word/response
https://esp32.arduino-forth.com/help/index-esp32/word/ok-response
https://esp32.arduino-forth.com/help/index-esp32/word/bad-response
https://esp32.arduino-forth.com/help/index-esp32/word/notfound-response
https://esp32.arduino-forth.com/help/index-esp32/word/ESP-builtins
https://esp32.arduino-forth.com/help/index-esp32/word/deepSleep
https://esp32.arduino-forth.com/help/index-esp32/word/getSketchSize
https://esp32.arduino-forth.com/help/index-esp32/word/getCpuFreqMHz
https://esp32.arduino-forth.com/help/index-esp32/word/getFlashChipSize
https://esp32.arduino-forth.com/help/index-esp32/word/getChipCores
https://esp32.arduino-forth.com/help/index-esp32/word/getChipModel
https://esp32.arduino-forth.com/help/index-esp32/word/wipe
https://esp32.arduino-forth.com/help/index-esp32/word/bluetooth-builtins
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.isReady
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.connected
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.disconnect
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.connectAddr
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.connect
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.unpairDevice
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.setPin
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.enableSSP
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.hasClient
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.flush
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.write
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.readBytes
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.available
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.end
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.begin
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.delete
https://esp32.arduino-forth.com/help/index-esp32/word/SerialBT.new
https://esp32.arduino-forth.com/help/index-esp32/word/chere
https://esp32.arduino-forth.com/help/index-esp32/word/end-code
https://esp32.arduino-forth.com/help/index-esp32/word/odd%3F

starts../ starts./ dirname ends/ default-remember-filename remember-filename

restore-name save-name forth-wordlist setup-saving-base 'cold park-forth

park-heap saving-base crtype cremit cases (+to) (to) --? }? ?room scope-create

do-local scope-clear scope-exit local-op scope-depth local+! local! local@

<>locals locals-here locals-area locals-gap locals-capacity ?ins. ins.

vins. onlines line-pos line-width size-all size-vocabulary vocs. voc. voclist

voclist-from see-all >vocnext see-vocabulary nonvoc? see-xt ?see-flags

see-loop see-one indent+! icr see. indent mem= ARGS_MARK -TAB +TAB NONAMED

BUILTIN_FORK SMUDGE IMMEDIATE_MARK relinquish dump-line ca@ cell-shift

cell-base cell-mask MALLOC_CAP_RTCRAM MALLOC_CAP_RETENTION MALLOC_CAP_IRAM_8BIT

MALLOC_CAP_DEFAULT MALLOC_CAP_INTERNAL MALLOC_CAP_SPIRAM MALLOC_CAP_DMA

MALLOC_CAP_8BIT MALLOC_CAP_32BIT MALLOC_CAP_EXEC #f+s internalized BUILTIN_MARK

zplace $place free. boot-prompt raw-ok [SKIP]' [SKIP] ?stack sp-limit input-limit

tib-setup raw.s $@ digit parse-quote leaving, leaving)leaving leaving(

value-bind evaluate&fill evaluate-buffer arrow ?arrow. ?echo input-buffer

immediate? eat-till-cr wascr *emit *key notfound last-vocabulary voc-stack-end

xt-transfer xt-hide xt-find& scope

interrupts
pinchange #GPIO_INTR_HIGH_LEVEL #GPIO_INTR_LOW_LEVEL #GPIO_INTR_ANYEDGE

#GPIO_INTR_NEGEDGE #GPIO_INTR_POSEDGE #GPIO_INTR_DISABLE ESP_INTR_FLAG_INTRDISABLED

ESP_INTR_FLAG_IRAM ESP_INTR_FLAG_EDGE ESP_INTR_FLAG_SHARED ESP_INTR_FLAG_NMI

ESP_INTR_FLAG_LEVELn ESP_INTR_FLAG_DEFAULT gpio_config gpio_reset_pin gpio_set_intr_type

gpio_intr_enable gpio_intr_disable gpio_set_level gpio_get_level gpio_set_direction

gpio_set_pull_mode gpio_wakeup_enable gpio_wakeup_disable gpio_pullup_en

 gpio_pulldown_en gpio_pulldown_dis gpio_hold_en gpio_hold_dis

gpio_deep_sleep_hold_en gpio_deep_sleep_hold_dis gpio_install_isr_service

 gpio_isr_handler_add gpio_isr_handler_remove

gpio_set_drive_capability gpio_get_drive_capability esp_intr_alloc esp_intr_free

interrupts-builtins

ledc
ledcSetup ledcAttachPin ledcDetachPin ledcRead ledcReadFreq ledcWrite ledcWriteTone

ledcWriteNote ledc-builtins

oled
OledInit SSD1306_SWITCHCAPVCC SSD1306_EXTERNALVCC WHITE BLACK OledReset HEIGHT

WIDTH OledAddr OledNew OledDelete OledBegin OledHOME OledCLS OledTextc

OledPrintln OledNumln OledNum OledDisplay OledPrint OledInvert OledTextsize

OledSetCursor OledPixel OledDrawL OledCirc OledCircF OledRect OledRectF

OledRectR OledRectRF oled-builtins

registers
m@ m!

riscv
C.FSWSP, C.SWSP, C.FSDSP, C.ADD, C.JALR, C.EBREAK, C.MV, C.JR, C.FLWSP,

C.LWSP, C.FLDSP, C.SLLI, BNEZ, BEQZ, C.J, C.ADDW, C.SUBW, C.AND, C.OR,

C.XOR, C.SUB, C.ANDI, C.SRAI, C.SRLI, C.LUI, C.LI, C.JAL, C.ADDI, C.NOP,

C.FSW, C.SW, C.FSD, C.FLW, C.LW, C.FLD, C.ADDI4SP, C.ILL, EBREAK, ECALL,

Page 297

https://esp32.arduino-forth.com/help/index-esp32/word/BEQZ%2C
https://esp32.arduino-forth.com/help/index-esp32/word/C.LWSP%2C
https://esp32.arduino-forth.com/help/index-esp32/word/m!
https://esp32.arduino-forth.com/help/index-esp32/word/m@
https://esp32.arduino-forth.com/help/index-esp32/word/OledPixel
https://esp32.arduino-forth.com/help/index-esp32/word/OledSetCursor
https://esp32.arduino-forth.com/help/index-esp32/word/OledInvert
https://esp32.arduino-forth.com/help/index-esp32/word/OledPrintln
https://esp32.arduino-forth.com/help/index-esp32/word/OledTextc
https://esp32.arduino-forth.com/help/index-esp32/word/OledCLS
https://esp32.arduino-forth.com/help/index-esp32/word/OledHOME
https://esp32.arduino-forth.com/help/index-esp32/word/OledBegin
https://esp32.arduino-forth.com/help/index-esp32/word/OledDelete
https://esp32.arduino-forth.com/help/index-esp32/word/OledNew
https://esp32.arduino-forth.com/help/index-esp32/word/OledAddr
https://esp32.arduino-forth.com/help/index-esp32/word/WIDTH
https://esp32.arduino-forth.com/help/index-esp32/word/HEIGHT
https://esp32.arduino-forth.com/help/index-esp32/word/OledReset
https://esp32.arduino-forth.com/help/index-esp32/word/BLACK
https://esp32.arduino-forth.com/help/index-esp32/word/WHITE
https://esp32.arduino-forth.com/help/index-esp32/word/SSD1306_EXTERNALVCC
https://esp32.arduino-forth.com/help/index-esp32/word/SSD1306_SWITCHCAPVCC
https://esp32.arduino-forth.com/help/index-esp32/word/OledInit
https://esp32.arduino-forth.com/help/index-esp32/word/ledc-builtins
https://esp32.arduino-forth.com/help/index-esp32/word/ledcWriteNote
https://esp32.arduino-forth.com/help/index-esp32/word/ledcWriteTone
https://esp32.arduino-forth.com/help/index-esp32/word/ledcWrite
https://esp32.arduino-forth.com/help/index-esp32/word/ledcReadFreq
https://esp32.arduino-forth.com/help/index-esp32/word/ledcRead
https://esp32.arduino-forth.com/help/index-esp32/word/ledcDetachPin
https://esp32.arduino-forth.com/help/index-esp32/word/ledcAttachPin
https://esp32.arduino-forth.com/help/index-esp32/word/ledcSetup
https://esp32.arduino-forth.com/help/index-esp32/word/interrupts-builtins
https://esp32.arduino-forth.com/help/index-esp32/word/esp_intr_free
https://esp32.arduino-forth.com/help/index-esp32/word/esp_intr_alloc
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_get_drive_capability
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_set_drive_capability
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_isr_handler_remove
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_isr_handler_add
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_install_isr_service
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_deep_sleep_hold_dis
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_deep_sleep_hold_en
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_hold_dis
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_hold_en
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_pulldown_dis
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_pulldown_en
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_pullup_en
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_wakeup_disable
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_wakeup_enable
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_set_pull_mode
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_set_direction
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_get_level
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_set_level
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_intr_disable
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_intr_enable
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_set_intr_type
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_reset_pin
https://esp32.arduino-forth.com/help/index-esp32/word/gpio_config
https://esp32.arduino-forth.com/help/index-esp32/word/ESP_INTR_FLAG_DEFAULT
https://esp32.arduino-forth.com/help/index-esp32/word/ESP_INTR_FLAG_LEVELn
https://esp32.arduino-forth.com/help/index-esp32/word/ESP_INTR_FLAG_NMI
https://esp32.arduino-forth.com/help/index-esp32/word/ESP_INTR_FLAG_SHARED
https://esp32.arduino-forth.com/help/index-esp32/word/ESP_INTR_FLAG_EDGE
https://esp32.arduino-forth.com/help/index-esp32/word/ESP_INTR_FLAG_IRAM
https://esp32.arduino-forth.com/help/index-esp32/word/ESP_INTR_FLAG_INTRDISABLED
https://esp32.arduino-forth.com/help/index-esp32/word/%23GPIO_INTR_DISABLE
https://esp32.arduino-forth.com/help/index-esp32/word/%23GPIO_INTR_POSEDGE
https://esp32.arduino-forth.com/help/index-esp32/word/%23GPIO_INTR_NEGEDGE
https://esp32.arduino-forth.com/help/index-esp32/word/%23GPIO_INTR_ANYEDGE
https://esp32.arduino-forth.com/help/index-esp32/word/%23GPIO_INTR_LOW_LEVEL
https://esp32.arduino-forth.com/help/index-esp32/word/%23GPIO_INTR_HIGH_LEVEL
https://esp32.arduino-forth.com/help/index-esp32/word/pinchange
https://esp32.arduino-forth.com/help/index-esp32/word/last-vocabulary
https://esp32.arduino-forth.com/help/index-esp32/word/immediate%3F
https://esp32.arduino-forth.com/help/index-esp32/word/input-buffer
https://esp32.arduino-forth.com/help/index-esp32/word/digit
https://esp32.arduino-forth.com/help/index-esp32/word/input-limit
https://esp32.arduino-forth.com/help/index-esp32/word/%5BSKIP%5D
https://esp32.arduino-forth.com/help/index-esp32/word/%5BSKIP%5D'
https://esp32.arduino-forth.com/help/index-esp32/word/%23f%2Bs
https://esp32.arduino-forth.com/help/index-esp32/word/MALLOC_CAP_EXEC
https://esp32.arduino-forth.com/help/index-esp32/word/MALLOC_CAP_32BIT
https://esp32.arduino-forth.com/help/index-esp32/word/MALLOC_CAP_8BIT
https://esp32.arduino-forth.com/help/index-esp32/word/MALLOC_CAP_DMA
https://esp32.arduino-forth.com/help/index-esp32/word/SMUDGE
https://esp32.arduino-forth.com/help/index-esp32/word/see.
https://esp32.arduino-forth.com/help/index-esp32/word/see-all
https://esp32.arduino-forth.com/help/index-esp32/word/voclist
https://esp32.arduino-forth.com/help/index-esp32/word/voc.
https://esp32.arduino-forth.com/help/index-esp32/word/vocs.
https://esp32.arduino-forth.com/help/index-esp32/word/line-width
https://esp32.arduino-forth.com/help/index-esp32/word/line-pos
https://esp32.arduino-forth.com/help/index-esp32/word/locals-capacity
https://esp32.arduino-forth.com/help/index-esp32/word/(to)
https://esp32.arduino-forth.com/help/index-esp32/word/(%2Bto)
https://esp32.arduino-forth.com/help/index-esp32/word/'cold
https://esp32.arduino-forth.com/help/index-esp32/word/save-name
https://esp32.arduino-forth.com/help/index-esp32/word/remember-filename

AND, OR, SRA, SRL, XOR, SLTU, SLT, SLL, SUB, ADD, SRAI, SRLI, SLLI, ANDI,

ORI, XORI, SLTIU, SLTI, ADDI, SW, SH, SB, LHU, LBU, LW, LH, LB, BGEU, BLTU,

BGE, BLT, BNE, BEQ, JALR, JAL, AUIPC, LUI, J-TYPE U-TYPE B-TYPE S-TYPE

I-TYPE R-TYPE rs2' rs2#' rs2 rs2# rs1' rs1#' rs1 rs1# rd' rd#' rd rd# offset

ofs ofs. >ofs iiii i numeric register' reg'. reg>reg' register reg. nop

x31 x30 x29 x28 x27 x26 x25 x24 x23 x22 x21 x20 x19 x18 x17 x16 x15 x14

x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 zero

rtos
vTaskDelete xTaskCreatePinnedToCore xPortGetCoreID rtos-builtins

SD
SD.begin SD.beginFull SD.beginDefaults SD.end SD.cardType SD.totalBytes

SD.usedBytes SD-builtins

SD_MMC
SD_MMC.begin SD_MMC.beginFull SD_MMC.beginDefaults SD_MMC.end SD_MMC.cardType

SD_MMC.totalBytes SD_MMC.usedBytes SD_MMC-builtins

Serial
Serial.begin Serial.end Serial.available Serial.readBytes Serial.write

Serial.flush Serial.setDebugOutput Serial2.begin Serial2.end Serial2.available

Serial2.readBytes Serial2.write Serial2.flush Serial2.setDebugOutput serial-
builtins

sockets
ip. ip# ->h_addr ->addr! ->addr@ ->port! ->port@ sockaddr l, s, bs, SO_REUSEADDR

SOL_SOCKET sizeof(sockaddr_in) AF_INET SOCK_RAW SOCK_DGRAM SOCK_STREAM

socket setsockopt bind listen connect sockaccept select poll send sendto

sendmsg recv recvfrom recvmsg gethostbyname errno sockets-builtins

spi
SPI.begin SPI.end SPI.setHwCs SPI.setBitOrder SPI.setDataMode SPI.setFrequency

SPI.setClockDivider SPI.getClockDivider SPI.transfer SPI.transfer8 SPI.transfer16

SPI.transfer32 SPI.transferBytes SPI.transferBits SPI.write SPI.write16

SPI.write32 SPI.writeBytes SPI.writePixels SPI.writePattern SPI-builtins

SPIFFS
SPIFFS.begin SPIFFS.end SPIFFS.format SPIFFS.totalBytes SPIFFS.usedBytes

SPIFFS-builtins

streams

stream> >stream stream>ch ch>stream wait-read wait-write empty? full? stream#

>offset >read >write stream

Page 298

https://esp32.arduino-forth.com/help/index-esp32/word/stream
https://esp32.arduino-forth.com/help/index-esp32/word/stream%23
https://esp32.arduino-forth.com/help/index-esp32/word/full%3F
https://esp32.arduino-forth.com/help/index-esp32/word/empty%3F
https://esp32.arduino-forth.com/help/index-esp32/word/ch%3Estream
https://esp32.arduino-forth.com/help/index-esp32/word/stream%3Ech
https://esp32.arduino-forth.com/help/index-esp32/word/%3Estream
https://esp32.arduino-forth.com/help/index-esp32/word/SPIFFS.usedBytes
https://esp32.arduino-forth.com/help/index-esp32/word/SPIFFS.totalBytes
https://esp32.arduino-forth.com/help/index-esp32/word/SPIFFS.format
https://esp32.arduino-forth.com/help/index-esp32/word/SPIFFS.end
https://esp32.arduino-forth.com/help/index-esp32/word/SPIFFS.begin
https://esp32.arduino-forth.com/help/index-esp32/word/SPI-builtins
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.writeBytes
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.write32
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.write16
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.write
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.transferBytes
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.transfer32
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.transfer16
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.transfer8
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.transfer
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.getClockDivider
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.setClockDivider
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.setFrequency
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.setDataMode
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.setBitOrder
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.setHwCs
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.end
https://esp32.arduino-forth.com/help/index-esp32/word/SPI.begin
https://esp32.arduino-forth.com/help/index-esp32/word/sockets-builtins
https://esp32.arduino-forth.com/help/index-esp32/word/errno
https://esp32.arduino-forth.com/help/index-esp32/word/gethostbyname
https://esp32.arduino-forth.com/help/index-esp32/word/send
https://esp32.arduino-forth.com/help/index-esp32/word/sockaccept
https://esp32.arduino-forth.com/help/index-esp32/word/listen
https://esp32.arduino-forth.com/help/index-esp32/word/bind
https://esp32.arduino-forth.com/help/index-esp32/word/setsockopt
https://esp32.arduino-forth.com/help/index-esp32/word/socket
https://esp32.arduino-forth.com/help/index-esp32/word/SOCK_STREAM
https://esp32.arduino-forth.com/help/index-esp32/word/SOCK_DGRAM
https://esp32.arduino-forth.com/help/index-esp32/word/SOCK_RAW
https://esp32.arduino-forth.com/help/index-esp32/word/AF_INET
https://esp32.arduino-forth.com/help/index-esp32/word/sizeof(sockaddr_in)
https://esp32.arduino-forth.com/help/index-esp32/word/SOL_SOCKET
https://esp32.arduino-forth.com/help/index-esp32/word/SO_REUSEADDR
https://esp32.arduino-forth.com/help/index-esp32/word/sockaddr
https://esp32.arduino-forth.com/help/index-esp32/word/ip%23
https://esp32.arduino-forth.com/help/index-esp32/word/ip.
https://esp32.arduino-forth.com/help/index-esp32/word/Serial2.flush
https://esp32.arduino-forth.com/help/index-esp32/word/Serial2.write
https://esp32.arduino-forth.com/help/index-esp32/word/Serial2.readBytes
https://esp32.arduino-forth.com/help/index-esp32/word/Serial2.available
https://esp32.arduino-forth.com/help/index-esp32/word/Serial2.end
https://esp32.arduino-forth.com/help/index-esp32/word/Serial2.begin
https://esp32.arduino-forth.com/help/index-esp32/word/Serial.flush
https://esp32.arduino-forth.com/help/index-esp32/word/Serial.write
https://esp32.arduino-forth.com/help/index-esp32/word/Serial.readBytes
https://esp32.arduino-forth.com/help/index-esp32/word/Serial.available
https://esp32.arduino-forth.com/help/index-esp32/word/Serial.end
https://esp32.arduino-forth.com/help/index-esp32/word/Serial.begin
https://esp32.arduino-forth.com/help/index-esp32/word/SD_MMC.usedBytes
https://esp32.arduino-forth.com/help/index-esp32/word/SD_MMC.begin
https://esp32.arduino-forth.com/help/index-esp32/word/rtos-builtins
https://esp32.arduino-forth.com/help/index-esp32/word/zero
https://esp32.arduino-forth.com/help/index-esp32/word/x1
https://esp32.arduino-forth.com/help/index-esp32/word/x2
https://esp32.arduino-forth.com/help/index-esp32/word/x3
https://esp32.arduino-forth.com/help/index-esp32/word/x4
https://esp32.arduino-forth.com/help/index-esp32/word/x5
https://esp32.arduino-forth.com/help/index-esp32/word/x6
https://esp32.arduino-forth.com/help/index-esp32/word/x7
https://esp32.arduino-forth.com/help/index-esp32/word/x8
https://esp32.arduino-forth.com/help/index-esp32/word/x9
https://esp32.arduino-forth.com/help/index-esp32/word/x10
https://esp32.arduino-forth.com/help/index-esp32/word/x11
https://esp32.arduino-forth.com/help/index-esp32/word/x12
https://esp32.arduino-forth.com/help/index-esp32/word/x13
https://esp32.arduino-forth.com/help/index-esp32/word/x14
https://esp32.arduino-forth.com/help/index-esp32/word/x15
https://esp32.arduino-forth.com/help/index-esp32/word/x16
https://esp32.arduino-forth.com/help/index-esp32/word/x17
https://esp32.arduino-forth.com/help/index-esp32/word/x18
https://esp32.arduino-forth.com/help/index-esp32/word/x19
https://esp32.arduino-forth.com/help/index-esp32/word/x20
https://esp32.arduino-forth.com/help/index-esp32/word/x21
https://esp32.arduino-forth.com/help/index-esp32/word/x22
https://esp32.arduino-forth.com/help/index-esp32/word/x23
https://esp32.arduino-forth.com/help/index-esp32/word/x24
https://esp32.arduino-forth.com/help/index-esp32/word/x25
https://esp32.arduino-forth.com/help/index-esp32/word/x26
https://esp32.arduino-forth.com/help/index-esp32/word/x27
https://esp32.arduino-forth.com/help/index-esp32/word/x28
https://esp32.arduino-forth.com/help/index-esp32/word/x29
https://esp32.arduino-forth.com/help/index-esp32/word/x30
https://esp32.arduino-forth.com/help/index-esp32/word/x31
https://esp32.arduino-forth.com/help/index-esp32/word/i
https://esp32.arduino-forth.com/help/index-esp32/word/BEQ%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADDI%2C
https://esp32.arduino-forth.com/help/index-esp32/word/SLLI%2C
https://esp32.arduino-forth.com/help/index-esp32/word/SRLI%2C
https://esp32.arduino-forth.com/help/index-esp32/word/SRAI%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADD%2C
https://esp32.arduino-forth.com/help/index-esp32/word/XOR%2C
https://esp32.arduino-forth.com/help/index-esp32/word/SRA%2C
https://esp32.arduino-forth.com/help/index-esp32/word/OR%2C
https://esp32.arduino-forth.com/help/index-esp32/word/AND%2C

structures
field struct-align align-by last-struct struct long ptr i64 i32 i16 i8

typer last-align

tasks
.tasks main-task task-list

telnetd
server broker-connection wait-for-connection connection telnet-key telnet-
type
telnet-emit broker client-len client telnet-port clientfd sockfd

visual
edit insides

web-interface
server webserver-task do-serve handle1 serve-key serve-type handle-input

handle-index out-string output-stream input-stream out-size webserver index-html

index-html#

WiFi
WIFI_MODE_APSTA WIFI_MODE_AP WIFI_MODE_STA WIFI_MODE_NULL WiFi.config WiFi.begin

WiFi.disconnect WiFi.status WiFi.macAddress WiFi.localIP WiFi.mode WiFi.setTxPower

WiFi.getTxPower WiFi.softAP WiFi.softAPIP WiFi.softAPBroadcastIP
WiFi.softAPNetworkID

WiFi.softAPConfig WiFi.softAPdisconnect WiFi.softAPgetStationNum WiFi-builtins

Wire
Wire.begin Wire.setClock Wire.getClock Wire.setTimeout Wire.getTimeout

Wire.beginTransmission Wire.endTransmission Wire.requestFrom Wire.write

Wire.available Wire.read Wire.peek Wire.flush Wire-builtins

xtensa
WUR, WSR, WITLB, WER, WDTLB, WAITI, SSXU, SSX, SSR, SSL, SSIU, SSI, SSAI,

SSA8L, SSA8B, SRLI, SRL, SRC, SRAI, SRA, SLLI, SLL, SICW, SICT, SEXT, SDCT,

RUR, RSR, RSIL, RFI, ROTW, RITLB1, RITLB0, RER, RDTLB1, RDTLB0, PITLB,

PDTLB, NSAU, NSA, MULA.DD.HH, MULA.DD.LH, MULA.DD.HL, MULA.DD.LL, MULS.DD

MULA.DA.HH, MULA.DA.LH, MULA.DA.HL, MULA.DA.LL, MULS.DA MULA.AD.HH, MULA.AD.LH,

MULA.AD.HL, MULA.AD.LL, MULS.AD MULA.AA.HH, MULA.AA.LH, MULA.AA.HL, MULA.AA.LL,

MULS.AA MULA.DD.HH.LDINC, MULA.DD.LH.LDINC, MULA.DD.HL.LDINC, MULA.DD.LL.LDINC,

MULA.DD.LDINC MULA.DD.HH.LDDEC, MULA.DD.LH.LDDEC, MULA.DD.HL.LDDEC,
MULA.DD.LL.LDDEC,

MULA.DD.LDDEC MULA.DD.HH, MULA.DD.LH, MULA.DD.HL, MULA.DD.LL, MULA.DD
MULA.DA.HH.LDINC,

MULA.DA.LH.LDINC, MULA.DA.HL.LDINC, MULA.DA.LL.LDINC, MULA.DA.LDINC
MULA.DA.HH.LDDEC,

MULA.DA.LH.LDDEC, MULA.DA.HL.LDDEC, MULA.DA.LL.LDDEC, MULA.DA.LDDEC MULA.DA.HH,

Page 299

https://esp32.arduino-forth.com/help/index-esp32/word/RSR%2C
https://esp32.arduino-forth.com/help/index-esp32/word/SEXT%2C
https://esp32.arduino-forth.com/help/index-esp32/word/SLLI%2C
https://esp32.arduino-forth.com/help/index-esp32/word/SRA%2C
https://esp32.arduino-forth.com/help/index-esp32/word/SRAI%2C
https://esp32.arduino-forth.com/help/index-esp32/word/SRLI%2C
https://esp32.arduino-forth.com/help/index-esp32/word/SSA8B%2C
https://esp32.arduino-forth.com/help/index-esp32/word/WSR%2C
https://esp32.arduino-forth.com/help/index-esp32/word/Wire-builtins
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.flush
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.peek
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.read
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.available
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.write
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.requestFrom
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.endTransmission
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.beginTransmission
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.getTimeout
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.setTimeout
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.getClock
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.setClock
https://esp32.arduino-forth.com/help/index-esp32/word/Wire.begin
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi-builtins
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi.softAP
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi.getTxPower
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi.setTxPower
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi.mode
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi.localIP
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi.macAddress
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi.status
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi.disconnect
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi.begin
https://esp32.arduino-forth.com/help/index-esp32/word/WiFi.config
https://esp32.arduino-forth.com/help/index-esp32/word/WIFI_MODE_NULL
https://esp32.arduino-forth.com/help/index-esp32/word/WIFI_MODE_STA
https://esp32.arduino-forth.com/help/index-esp32/word/WIFI_MODE_AP
https://esp32.arduino-forth.com/help/index-esp32/word/WIFI_MODE_APSTA
https://esp32.arduino-forth.com/help/index-esp32/word/index-html%23
https://esp32.arduino-forth.com/help/index-esp32/word/index-html
https://esp32.arduino-forth.com/help/index-esp32/word/webserver
https://esp32.arduino-forth.com/help/index-esp32/word/server
https://esp32.arduino-forth.com/help/index-esp32/word/insides
https://esp32.arduino-forth.com/help/index-esp32/word/edit
https://esp32.arduino-forth.com/help/index-esp32/word/sockfd
https://esp32.arduino-forth.com/help/index-esp32/word/client
https://esp32.arduino-forth.com/help/index-esp32/word/client-len
https://esp32.arduino-forth.com/help/index-esp32/word/telnet-emit
https://esp32.arduino-forth.com/help/index-esp32/word/telnet-type
https://esp32.arduino-forth.com/help/index-esp32/word/telnet-type
https://esp32.arduino-forth.com/help/index-esp32/word/telnet-key
https://esp32.arduino-forth.com/help/index-esp32/word/server
https://esp32.arduino-forth.com/help/index-esp32/word/task-list
https://esp32.arduino-forth.com/help/index-esp32/word/main-task
https://esp32.arduino-forth.com/help/index-esp32/word/.tasks
https://esp32.arduino-forth.com/help/index-esp32/word/typer
https://esp32.arduino-forth.com/help/index-esp32/word/i8
https://esp32.arduino-forth.com/help/index-esp32/word/i16
https://esp32.arduino-forth.com/help/index-esp32/word/i32
https://esp32.arduino-forth.com/help/index-esp32/word/i64
https://esp32.arduino-forth.com/help/index-esp32/word/ptr
https://esp32.arduino-forth.com/help/index-esp32/word/long
https://esp32.arduino-forth.com/help/index-esp32/word/struct
https://esp32.arduino-forth.com/help/index-esp32/word/last-struct
https://esp32.arduino-forth.com/help/index-esp32/word/field

MULA.DA.LH, MULA.DA.HL, MULA.DA.LL, MULA.DA MULA.AD.HH, MULA.AD.LH, MULA.AD.HL,

MULA.AD.LL, MULA.AD MULA.AA.HH, MULA.AA.LH, MULA.AA.HL, MULA.AA.LL, MULA.AA

MUL16U, MUL16S, MUL.DD.HH, MUL.DD.LH, MUL.DD.HL, MUL.DD.LL, MUL.DD MUL.DA.HH,

MUL.DA.LH, MUL.DA.HL, MUL.DA.LL, MUL.DA MUL.AD.HH, MUL.AD.LH, MUL.AD.HL,

MUL.AD.LL, MUL.AD MUL.AA.HH, MUL.AA.LH, MUL.AA.HL, MUL.AA.LL, MUL.AA MOVT,

MOVSP, MOVT.S, MOVF.S, MOVGEZ.S, MOVLTZ.S, MOVNEZ.S, MOVEQZ.S, ULE.S, OLE.S,

ULT.S, OLT.S, UEQ.S, OEQ.S, UN.S, CMPSOP NEG.S, WFR, RFR, ABS.S, MOV.S,

ALU2.S UTRUNC.S, UFLOAT.S, FLOAT.S, CEIL.S, FLOOR.S, TRUNC.S, ROUND.S,

MSUB.S, MADD.S, MUL.S, SUB.S, ADD.S, ALU.S MOVF, MOVGEZ, MOVLTZ, MOVNEZ,

MOVEQZ, MAXU, MINU, MAX, MIN, CONDOP MOV, LSXU, LSX, L32E, LICW, LICT,

LDCT, JX, IITLB, IDTLB, LSIU, LSI, LDINC, LDDEC, L32R, EXTUI, S32E, S32RI,

S32C1I, ADDMI, ADDI, L32AI, L16SI, S32I, S16I, S8I, L32I, L16UI, L8UI,

LDSTORE MOVI, IIU, IHU, IPFL, DIWBI, DIWB, DIU, DHU, DPFL, CACHING2 III,

IHI, IPF, DII, DHI, DHWBI, DHWB, DPFWO, DPFRO, DPFW, DPFR, CACHING1 CLAMPS,

BREAK, CALLX12, CALLX8, CALLX4, CALLX0, CALLXOP CALL12, CALL8, CALL4, CALL0,

CALLOP LOOPGTZ, LOOPNEZ, LOOP, BT, BF, BRANCH2b J, BGEUI, BGEI, BGEZ, BLTUI,

BLTI, BLTZ, BNEI, BNEZ, ENTRY, BEQI, BEQZ, BRANCH2e BRANCH2a BRANCH2 BBSI,

BBS, BNALL, BGEU, BGE, BNE, BANY, BBCI, BBC, BALL, BLTU, BLT, BEQ, BNONE,

BRANCH1 REMS, REMU, QUOS, QUOU, MULSH, MULUH, MULL, XORB, ORBC, ORB, ANDBC,

ANDB, ALU2 ALL8, ANY8, ALL4, ANY4, ANYALL SUBX8, SUBX4, SUBX2, SUB, ADDX8,

ADDX4, ADDX2, ADD, XOR, OR, AND, ALU XSR, ABS, NEG, RFDO, RFDD, SIMCALL,

SYSCALL, RFWU, RFWO, RFDE, RFUE, RFME, RFE, NOP, EXTW, MEMW, EXCW, DSYNC,

ESYNC, RSYNC, ISYNC, RETW, RET, ILL, ILL.N, NOP.N, RETW.N, RET.N, BREAK.N,

MOV.N, MOVI.N, BNEZ.N, BEQZ.N, ADDI.N, ADD.N, S32I.N, L32I.N, tttt t ssss

s rrrr r bbbb b y w iiii i xxxx x sa sa. >sa entry12 entry12' entry12.

>entry12 coffset18 cofs cofs. >cofs offset18 offset12 offset8 ofs18 ofs12

ofs8 ofs18. ofs12. ofs8. >ofs sr imm16 imm8 imm4 im numeric register reg.

nop a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

Page 300

https://esp32.arduino-forth.com/help/index-esp32/word/a0
https://esp32.arduino-forth.com/help/index-esp32/word/a1
https://esp32.arduino-forth.com/help/index-esp32/word/a2
https://esp32.arduino-forth.com/help/index-esp32/word/a3
https://esp32.arduino-forth.com/help/index-esp32/word/a4
https://esp32.arduino-forth.com/help/index-esp32/word/a5
https://esp32.arduino-forth.com/help/index-esp32/word/a6
https://esp32.arduino-forth.com/help/index-esp32/word/a7
https://esp32.arduino-forth.com/help/index-esp32/word/a8
https://esp32.arduino-forth.com/help/index-esp32/word/a9
https://esp32.arduino-forth.com/help/index-esp32/word/a10
https://esp32.arduino-forth.com/help/index-esp32/word/a11
https://esp32.arduino-forth.com/help/index-esp32/word/a12
https://esp32.arduino-forth.com/help/index-esp32/word/a13
https://esp32.arduino-forth.com/help/index-esp32/word/a14
https://esp32.arduino-forth.com/help/index-esp32/word/a15
https://esp32.arduino-forth.com/help/index-esp32/word/i
https://esp32.arduino-forth.com/help/index-esp32/word/L32I.N%2C
https://esp32.arduino-forth.com/help/index-esp32/word/S32I.N%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADD.N%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADDI.N%2C
https://esp32.arduino-forth.com/help/index-esp32/word/RET.N%2C
https://esp32.arduino-forth.com/help/index-esp32/word/RETW.N%2C
https://esp32.arduino-forth.com/help/index-esp32/word/NOP.N%2C
https://esp32.arduino-forth.com/help/index-esp32/word/RET%2C
https://esp32.arduino-forth.com/help/index-esp32/word/EXTW%2C
https://esp32.arduino-forth.com/help/index-esp32/word/NOP%2C
https://esp32.arduino-forth.com/help/index-esp32/word/NEG%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ABS%2C
https://esp32.arduino-forth.com/help/index-esp32/word/AND%2C
https://esp32.arduino-forth.com/help/index-esp32/word/OR%2C
https://esp32.arduino-forth.com/help/index-esp32/word/XOR%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADD%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADDX2%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADDX4%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADDX8%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ANY4%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ALL4%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ANY8%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ALL8%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ANDB%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ANDBC%2C
https://esp32.arduino-forth.com/help/index-esp32/word/MULL%2C
https://esp32.arduino-forth.com/help/index-esp32/word/QUOS%2C
https://esp32.arduino-forth.com/help/index-esp32/word/REMS%2C
https://esp32.arduino-forth.com/help/index-esp32/word/BEQ%2C
https://esp32.arduino-forth.com/help/index-esp32/word/BALL%2C
https://esp32.arduino-forth.com/help/index-esp32/word/BEQZ%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ENTRY%2C
https://esp32.arduino-forth.com/help/index-esp32/word/J%2C
https://esp32.arduino-forth.com/help/index-esp32/word/LOOP%2C
https://esp32.arduino-forth.com/help/index-esp32/word/CALL0%2C
https://esp32.arduino-forth.com/help/index-esp32/word/MOVI%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADDI%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADDMI%2C
https://esp32.arduino-forth.com/help/index-esp32/word/L32R%2C
https://esp32.arduino-forth.com/help/index-esp32/word/IDTLB%2C
https://esp32.arduino-forth.com/help/index-esp32/word/JX%2C
https://esp32.arduino-forth.com/help/index-esp32/word/MOV%2C
https://esp32.arduino-forth.com/help/index-esp32/word/MIN%2C
https://esp32.arduino-forth.com/help/index-esp32/word/MAX%2C
https://esp32.arduino-forth.com/help/index-esp32/word/MINU%2C
https://esp32.arduino-forth.com/help/index-esp32/word/MAXU%2C
https://esp32.arduino-forth.com/help/index-esp32/word/MOVF%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ADD.S%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ROUND.S%2C
https://esp32.arduino-forth.com/help/index-esp32/word/ABS.S%2C
https://esp32.arduino-forth.com/help/index-esp32/word/MOVT%2C

Appendix A – Registers summary
…...

GPIO registers
Name Description Address Access

GPIO_OUT_REG GPIO 0-31 output register $3FF44004 R/W

GPIO_OUT_W1TS_REG GPIO 0-31 output register_W1TS $3FF44008 WO

GPIO_OUT_W1TC_REG GPIO 0-31 output register_W1TC $3FF4400C WO

GPIO_OUT1_REG GPIO GPIO 32-39 output register $3FF44010 R/W

GPIO_OUT1_W1TS_REG GPIO 32-39 output bit set register $3FF44014 WO

GPIO_OUT1_W1TC_REG GPIO 32-39 output bit clear register $3FF44018 WO

GPIO_ENABLE_REG GPIO 0-31 output enable register $3FF44020 R/W

GPIO_ENABLE_W1TS_REG GPIO 0-31 output enable register_W1TS $3FF44024 WO

GPIO_ENABLE_W1TC_REG GPIO 0-31 output enable register_W1TC $3FF44028 WO

GPIO_ENABLE1_REG GPIO 32-39 output enable register $3FF4402C R/W

GPIO_ENABLE1_W1TS_REG GPIO 32-39 output enable bit set register $3FF44030 WO

GPIO_ENABLE1_W1TC_REG GPIO 32-39 output enable bit clear register $3FF44034 WO

GPIO_STRAP_REG Bootstrap pin value register $3FF44038 RO

GPIO_IN_REG GPIO 0-31 input register $3FF4403C RO

GPIO_IN1_REG GPIO 32-39 input register $3FF44040 RO

GPIO_STATUS_REG GPIO 0-31 interrupt status register $3FF44044 R/W

GPIO_STATUS_W1TS_REG GPIO 0-31 interrupt status register_W1TS $3FF44048 WO

GPIO_STATUS_W1TC_REG GPIO 0-31 interrupt status register_W1TC $3FF4404C WO

GPIO_STATUS1_REG GPIO 32-39 interrupt status register1 $3FF44050 R/W

GPIO_STATUS1_W1TS_REG GPIO 32-39 interrupt status bit set register $3FF44054 WO

GPIO_STATUS1_W1TC_REG GPIO 32-39 interrupt status bit clear register $3FF44058 WO

GPIO_ACPU_INT_REG GPIO 0-31 APP_CPU interrupt status $3FF44060 RO

GPIO_ACPU_NMI_INT_REG GPIO 0-31 APP_CPU non-maskable interrupt status $3FF44064 RO

GPIO_PCPU_INT_REG GPIO 0-31 PRO_CPU interrupt status $3FF44068 RO

GPIO_PCPU_NMI_INT_REG GPIO 0-31 PRO_CPU non-maskable interrupt status $3FF4406C RO

GPIO_ACPU_INT1_REG GPIO 32-39 APP_CPU interrupt status $3FF44074 RO

GPIO_ACPU_NMI_INT1_REG GPIO 32-39 APP_CPU non-maskable interrupt status $3FF44078 RO

GPIO_PCPU_INT1_REG GPIO 32-39 PRO_CPU interrupt status $3FF4407C RO

GPIO_PCPU_NMI_INT1_REG GPIO 32-39 PRO_CPU non-maskable interrupt status $3FF44080 RO

GPIO_PIN0_REG Configuration for GPIO pin 0 $3FF44088 R/W

GPIO_PIN1_REG Configuration for GPIO pin 1 $3FF4408C R/W

GPIO_PIN2_REG Configuration for GPIO pin 2 $3FF44090 R/W

GPIO_PIN38_REG Configuration for GPIO pin 38 $3FF44120 R/W

GPIO_PIN39_REG Configuration for GPIO pin 39 $3FF44124 R/W

GPIO_FUNC0_IN_SEL_CFG_REG Peripheral function 0 input selection register $3FF44130 R/W

GPIO_FUNC1_IN_SEL_CFG_REG Peripheral function 1 input selection register $3FF44134 R/W

GPIO_FUNC254_IN_SEL_CFG_REG Peripheral function 254 input selection register $3FF44528 R/W

GPIO_FUNC255_IN_SEL_CFG_REG Peripheral function 255 input selection register $3FF4452C R/W

GPIO_FUNC0_OUT_SEL_CFG_REG Peripheral output selection for GPIO 0 $3FF44530 R/W

GPIO_FUNC1_OUT_SEL_CFG_REG Peripheral output selection for GPIO 1 $3FF44534 R/W

GPIO_FUNC38_OUT_SEL_CFG_REG Peripheral output selection for GPIO 38 $3FF445C8 R/W

GPIO_FUNC39_OUT_SEL_CFG_REG Peripheral output selection for GPIO 39 $3FF445CC R/W

IO_MUX_PIN_CTRL Clock output configuration register $3FF49000 R/W

Page 301

Name Description Address Access
IO_MUX_GPIO36_REG Configuration register for pad GPIO36 $3FF49004 R/W

IO_MUX_GPIO37_REG Configuration register for pad GPIO37 $3FF49008 R/W

IO_MUX_GPIO38_REG Configuration register for pad GPIO38 $3FF4900C R/W

IO_MUX_GPIO39_REG Configuration register for pad GPIO39 $3FF49010 R/W

IO_MUX_GPIO34_REG Configuration register for pad GPIO34 $3FF49014 R/W

IO_MUX_GPIO35_REG Configuration register for pad GPIO35 $3FF49018 R/W

IO_MUX_GPIO32_REG Configuration register for pad GPIO32 $3FF4901C R/W

IO_MUX_GPIO33_REG Configuration register for pad GPIO33 $3FF49020 R/W

IO_MUX_GPIO25_REG Configuration register for pad GPIO25 $3FF49024 R/W

IO_MUX_GPIO26_REG Configuration register for pad GPIO26 $3FF49028 R/W

IO_MUX_GPIO27_REG Configuration register for pad GPIO27 $3FF4902C R/W

IO_MUX_MTMS_REG Configuration register for pad MTMS $3FF49030 R/W

IO_MUX_MTDI_REG Configuration register for pad MTDI $3FF49034 R/W

IO_MUX_MTCK_REG Configuration register for pad MTCK $3FF49038 R/W

IO_MUX_MTDO_REG Configuration register for pad MTDO $3FF4903C R/W

IO_MUX_GPIO2_REG Configuration register for pad GPIO2 $3FF49040 R/W

IO_MUX_GPIO0_REG Configuration register for pad GPIO0 $3FF49044 R/W

IO_MUX_GPIO4_REG Configuration register for pad GPIO4 $3FF49048 R/W

IO_MUX_GPIO16_REG Configuration register for pad GPIO16 $3FF4904C R/W

IO_MUX_GPIO17_REG Configuration register for pad GPIO17 $3FF49050 R/W

IO_MUX_SD_DATA2_REG Configuration register for pad SD_DATA2 $3FF49054 R/W

IO_MUX_SD_DATA3_REG Configuration register for pad SD_DATA3 $3FF49058 R/W

IO_MUX_SD_CMD_REG Configuration register for pad SD_CMD $3FF4905C R/W

IO_MUX_SD_CLK_REG Configuration register for pad SD_CLK $3FF49060 R/W

IO_MUX_SD_DATA0_REG Configuration register for pad SD_DATA0 $3FF49064 R/W

IO_MUX_SD_DATA1_REG Configuration register for pad SD_DATA1 $3FF49068 R/W

IO_MUX_GPIO5_REG Configuration register for pad GPIO5 $3FF4906C R/W

IO_MUX_GPIO18_REG Configuration register for pad GPIO18 $3FF49070 R/W

IO_MUX_GPIO19_REG Configuration register for pad GPIO19 $3FF49074 R/W

IO_MUX_GPIO20_REG Configuration register for pad GPIO20 $3FF49078 R/W

IO_MUX_GPIO21_REG Configuration register for pad GPIO21 $3FF4907C R/W

IO_MUX_GPIO22_REG Configuration register for pad GPIO22 $3FF49080 R/W

IO_MUX_U0RXD_REG Configuration register for pad U0RXD $3FF49084 R/W

IO_MUX_U0TXD_REG Configuration register for pad U0TXD $3FF49088 R/W

IO_MUX_GPIO23_REG Configuration register for pad GPIO23 $3FF4908C R/W

IO_MUX_GPIO24_REG Configuration register for pad GPIO24 $3FF49090 R/W

GPIO configuration / data registers

RTCIO_RTC_GPIO_OUT_REG RTC GPIO output register 0x3FF48400 R/W

RTCIO_RTC_GPIO_OUT_W1TS_REG RTC GPIO output bit set register 0x3FF48404 WO

RTCIO_RTC_GPIO_OUT_W1TC_REG RTC GPIO output bit clear register 0x3FF48408 WO

RTCIO_RTC_GPIO_ENABLE_REG RTC GPIO output enable register 0x3FF4840C R/W

RTCIO_RTC_GPIO_ENABLE_W1TS_REG RTC GPIO output enable bit set register 0x3FF48410 WO

RTCIO_RTC_GPIO_ENABLE_W1TC_REG RTC GPIO output enable bit clear register 0x3FF48414 WO

RTCIO_RTC_GPIO_STATUS_REG RTC GPIO interrupt status register 0x3FF48418 WO

RTCIO_RTC_GPIO_STATUS_W1TS_REG RTC GPIO interrupt status bit set register 0x3FF4841C WO

RTCIO_RTC_GPIO_STATUS_W1TC_REG RTC GPIO interrupt status bit clear register 0x3FF48420 WO

RTCIO_RTC_GPIO_IN_REG RTC GPIO input register 0x3FF48424 RO

RTCIO_RTC_GPIO_PIN0_REG RTC configuration for pin 0 0x3FF48428 R/W

RTCIO_RTC_GPIO_PIN1_REG RTC configuration for pin 1 0x3FF4842C R/W

RTCIO_RTC_GPIO_PIN2_REG RTC configuration for pin 2 0x3FF48430 R/W

RTCIO_RTC_GPIO_PIN3_REG RTC configuration for pin 3 0x3FF48434 R/W

Page 302

Name Description Address Access
RTCIO_RTC_GPIO_PIN4_REG RTC configuration for pin 4 0x3FF48438 R/W

RTCIO_RTC_GPIO_PIN5_REG RTC configuration for pin 5 0x3FF4843C R/W

RTCIO_RTC_GPIO_PIN6_REG RTC configuration for pin 6 0x3FF48440 R/W

RTCIO_RTC_GPIO_PIN7_REG RTC configuration for pin 7 0x3FF48444 R/W

RTCIO_RTC_GPIO_PIN8_REG RTC configuration for pin 8 0x3FF48448 R/W

RTCIO_RTC_GPIO_PIN9_REG RTC configuration for pin 9 0x3FF4844C R/W

RTCIO_RTC_GPIO_PIN10_REG RTC configuration for pin 10 0x3FF48450 R/W

RTCIO_RTC_GPIO_PIN11_REG RTC configuration for pin 11 0x3FF48454 R/W

RTCIO_RTC_GPIO_PIN12_REG RTC configuration for pin 12 0x3FF48458 R/W

RTCIO_RTC_GPIO_PIN13_REG RTC configuration for pin 13 0x3FF4845C R/W

RTCIO_RTC_GPIO_PIN14_REG RTC configuration for pin 14 0x3FF48460 R/W

RTCIO_RTC_GPIO_PIN15_REG RTC configuration for pin 15 0x3FF48464 R/W

RTCIO_RTC_GPIO_PIN16_REG RTC configuration for pin 16 0x3FF48468 R/W

RTCIO_RTC_GPIO_PIN17_REG RTC configuration for pin 17 0x3FF4846C R/W

RTCIO_DIG_PAD_HOLD_REG RTC GPIO hold register 0x3FF48474 R/W

GPIO RTC function configuration registers

RTCIO_HALL_SENS_REG Hall sensor configuration 0x3FF48478 R/W

RTCIO_SENSOR_PADS_REG Sensor pads configuration register 0x3FF4847C R/W

RTCIO_ADC_PAD_REG ADC configuration register 0x3FF48480 R/W

RTCIO_PAD_DAC1_REG DAC1 configuration register 0x3FF48484 R/W

RTCIO_PAD_DAC2_REG DAC2 configuration register 0x3FF48488 R/W

RTCIO_XTAL_32K_PAD_REG 32KHz crystal pads configuration register 0x3FF4848C R/W

RTCIO_TOUCH_CFG_REG Touch sensor configuration register 0x3FF48490 R/W

RTCIO_TOUCH_PAD0_REG Touch pad configuration register 0x3FF48494 R/W

,,, ,,,

RTCIO_TOUCH_PAD9_REG Touch pad configuration register 0x3FF484B8 R/W

RTCIO_EXT_WAKEUP0_REG External wake up configuration register 0x3FF484BC R/W

RTCIO_XTL_EXT_CTR_REG Crystal power down enable GPIO source 0x3FF484C0 R/W

RTCIO_SAR_I2C_IO_REG RTC I2C pad selection 0x3FF484C4 R/W

Page 303

Ressources

in English

• ESP32forth page maintained by Brad NELSON, the creator of ESP32forth. You will
find all versions there (ESP32, Windows, Web, Linux...)
https://esp32forth.appspot.com/ESP32forth.html

• ESP32forth (eforth for ESP32) page maintened by Peter FORTH
https://www.forth2020.org/esp32forth

In french

• ESP32 Forth site in two languages (French, English) with lots of examples
https://esp32.arduino-forth.com/

GitHub

• Ueforth resources maintained by Brad NELSON. Contains all Forth and C language
source files for ESP32forth
https://github.com/flagxor/ueforth

• ESP32forth source codes and documentation for ESP32forth. Resources
maintained by Marc PETREMANN
https://github.com/MPETREMANN11/ESP32forth

• ESP32forthStation resources maintained by Ulrich HOFFMAN. Stand alone Forth
computer with LillyGo TTGO VGA32 single board computer and ESP32forth.
https://github.com/uho/ESP32forthStation

• ESP32Forth resources maintained by F. J. RUSSO
https://github.com/FJRusso53/ESP32Forth

• esp32forth-addons resources maintained by Peter FORTH
https://github.com/PeterForth/esp32forth-addons

• Esp32forth-org Code repository for members of the Forth2020 and ESp32forth
groups
https://github.com/Esp32forth-org

•

Page 304

https://github.com/Esp32forth-org
https://github.com/PeterForth/esp32forth-addons
https://github.com/FJRusso53/ESP32Forth
https://github.com/uho/ESP32forthStation
https://github.com/MPETREMANN11/ESP32forth
https://github.com/flagxor/ueforth
https://esp32.arduino-forth.com/
https://www.forth2020.org/esp32forth
https://esp32forth.appspot.com/ESP32forth.html

Index
ADC channels.....................178
allot.......................................56
analogRead..........................179
and...39
asm..............................241, 295
autoexec.fs..........................139
BASE....................................80
binary....................................34
bluetooth.............................296
breadboard...........................100
c!...55
c@...55
code.....................................236
commande AT...........................

..265
constant.................................55
create...............................56, 97
decimal..................................34
DECIMAL............................80
default-use...........................116
defer..............................93, 273
defPin:.................................142
démarrage automatique.............

..104
DOES>..................................97
dump.....................................50
editor....................116, 118, 296
end-code..............................236
ESP......................................296
fconstant................................77
flush.....................................118
forget.....................................52
FORTH................................294
FORTH word........................27
fvariable................................77
GIT......................................134
handleClient........................289

hex...34
HEX......................................80
HOLD...................................81
httpd....................................296
include.................................122
insides.................................296
internals...............................296
interrupts.............................297
interval................................163
is..93
ledc......................................297
list..119
load......................................118
login....................................112
m!................................145, 253
m@......................................148
ms-ticks...............................171
Netbeans..............................133
normal...................................58
oled..............................187, 297
page.......................................58
r@..55
r>...55
rdrop......................................55
RECORDFILE............126, 138
registers...............................297
rerun....................................163
ressources............................304
riscv.....................................297
rtos.......................................298
S"...84
save-buffers.........................119
SD.......................................298
SD_MMC............................298
see...50
Serial...................................298
server...................................113

SF!...77
SF@......................................77
shift.......................................39
sockets.................................298
spi..298
SPIFFS........................122, 298
streams................................298
struct......................................71
structures.......................71, 299
tasks.....................................299
telnetd..........................113, 299
Tera Term............................106
thru......................................118
type..43
u...37
value......................................56
variable..................................55
visual...................................299
web-interface.......................299
WiFi....................................299
wipe.....................................117
Wire.....................................299
xtensa..................................299
xtensa-assembler.................236

..240
;...52
:...52
:noname.................................95
.s..

..51
#...81
#>..81
#S..81
<#..81
>r...55

Page 305

	Author
	Collaborators
	Introduction
	Translation help

	Discovery of the ESP32 card
	Presentation
	The strong points

	GPIO inputs/outputs on ESP32
	ESP32 Peripherals

	The different ESP32 cards
	Final installation of ESP32forth
	The ESP32 Wroom 32 board
	Connector board

	The ESP32 Wrover board
	Connector board

	The ESP32 S3 board
	Connector board

	Install ESP32Forth
	Download ESP32forth
	Compiling and installing ESP32forth
	Settings for ESP32 WROOM
	Start the compilation

	Fix Upload Connection Error
	Why program in FORTH language on ESP32?
	Preamble
	Boundaries between language and application
	What is a FORTH word?
	A word is a function?
	FORTH language compared to C language
	What FORTH allows you to do compared to the C language
	But why a stack rather than variables?
	Are you convinced?

	Are there any professional applications written in FORTH?

	Using numbers with ESP32Forth
	Numbers with the FORTH interpreter
	Entering numbers with different numeric bases
	Change of numerical base
	Binary and hexadecimal
	Size of numbers on FORTH data stack
	Memory access and logic operations

	A real 32-bit FORTH with ESP32Forth
	Values on the data stack
	Values in memory
	Word processing depending on data size or type

	Conclusion

	Comments and debugging
	Write readable FORTH code
	Source code indentation

	Comments
	Stack comments
	Meaning of stack parameters in comments
	Word Definition Word Comments

	Textual comments
	Comment at the beginning of the source code

	Diagnostic and tuning tools
	The decompiler
	Memory dump
	Data stack monitor

	Dictionary / Stack / Variables / Constants
	Expand Dictionary
	Dictionary management

	Stacks and reverse Polish notation
	Handling the parameter stack

	The Return Stack and Its Uses
	Memory usage
	Variables
	Constants
	Pseudo-constant values
	Basic tools for memory allocation

	Text colors and display position on terminal
	ANSI coding of terminals
	Text coloring
	Display position

	Local variables with ESP32Forth
	Introduction
	The fake stack comment
	Action on local variables

	Data structures for ESP32forth
	Preamble
	Tables in FORTH
	One-dimensional 32-bit data array
	Words for table definitions
	Read and write in a table
	Practical example of managing a virtual screen

	Management of complex structures
	Definition of sprites

	Real numbers with ESP32forth
	The real ones with ESP32forth
	Real number accuracy with ESP32forth
	Real constants and variables
	Arithmetic operators on real numbers
	Mathematical operators on real numbers
	Logical operators on real numbers
	Integer ↔ real transformations

	Displaying numbers and character strings
	Change of numerical base
	Definition of new display formats
	Displaying characters and character strings
	String variables
	Text variable management word code
	Adding character to an alphanumeric variable

	Vocabularies with ESP32forth
	List of vocabularies
	List of vocabulary contents
	Using vocabulary words
	Chaining of vocabularies

	Delayed action words
	Definition and usage of words with defer
	Setting a Forward Reference
	Dependence on the operating context

	A practical case

	Word Creation Words
	Using does>
	Color management example
	Example, writing in pinyin

	Adapt breadboards to ESP32 board
	Breadboards for ESP32
	Build a breadboard suitable for the ESP32 board

	Powering the ESP32 board
	Choice of power source
	Powered by mini-USB connector
	Power supply via 5V pin

	Automatic start of a program

	Install and use the Tera Term terminal on Windows
	Install Tera Term
	Setting up Tera Term
	Using Tera Term
	Compile source code in Forth language

	Access ESP32Forth by TELNET
	Change the DNS name of the ESP32 board
	Connecting to ESP32 boards by their hostname

	Management of source files by blocks
	The blocks
	Open a block file
	Edit the contents of a block
	Compiling block contents
	Practical step-by-step example
	Conclusion

	Editing source files with VISUAL Editor
	Edit a FORTH source file
	Editing the FORTH code
	Compiling file contents

	The SPIFFS file system
	Access to the SPIFFS file system
	Handling files

	Organize and compile your files on the ESP32 card
	Editing and transmitting source files

	Conclusion

	RECORDFILE and FORTH project management
	Save RECORDFILE in autoexec.fs file
	Use modified contents of autoexec.fs file
	Breaking down a project with ESP32forth
	Example project

	The notion of a black box

	Editing and managing source files for ESP32forth
	Text file editors
	Use an IDE
	Storage on GitHub

	Some good practices
	The main.fs file

	Quickly save files to SPIFFS
	Have the word RECORDFILE when starting ESP32forth

	Managing a traffic light with ESP32
	GPIO ports on the ESP32 board
	Mounting the LEDs
	Management of traffic lights
	Conclusion

	Direct access to GPIO registers
	Use of words m! and m@
	The GPIO_OUT_REG register
	Activation and deactivation registers

	Hardware interrupts with ESP32forth
	Interruptions
	Mounting a push button
	Software consolidation of the interrupt
	Further information

	Using the KY-040 rotary encoder
	Encoder Overview
	Mounting the encoder on the breadboard
	Analysis of encoder signals

	Encoder programming
	Testing the encoding
	Increment and decrement a variable with the encoder

	Flashing of an LED per timer
	Getting started with FORTH programming
	Flashing by TIMER
	Hardware and software interrupts
	Use the words interval and rerun

	Housekeeper timer
	Preamble
	A solution

	A FORTH timer for ESP32Forth
	Management of the light on button
	Conclusion

	Software real-time clock
	The word MS-TICKS
	Managing a software clock

	Measuring the execution time of a FORTH word
	Measuring the performance of FORTH definitions
	Testing a few loops

	Program a sunshine analyzer
	Preamble
	The miniature solar panel
	Recovery of a miniature solar panel
	Measurement of solar panel voltage
	Solar panel current measurement
	Lowering the solar panel voltage

	Programming the solar analyzer
	Managing activation and deactivation of a device
	Triggered by timer interrupt
	Devices controlled by the sunshine sensor

	Management of N/A (Digital/Analog) outputs
	Digital/analog conversion
	D/A conversion with R2R circuit
	D/A conversion with ESP32
	Possibilities of D/A conversion

	Installing the OLED library for SSD1306
	The I2C interface on ESP32
	Introduction
	Master slave exchange
	Addressing
	Setting GPIO ports for I2C
	I2C bus protocols

	Detecting an I2C device

	The SSD1306 OLED display
	Choosing a display interface
	Online documentation
	Connecting the SSD1306 OLED display
	Memory organization

	Organize the SSD1306 project
	Create the autoexec.fs file
	Creating the main.fs file
	Creating the config.fs file
	Creating the oledTools.fs file
	Test our SSD1306 project

	Use OLED vocabulary
	Initializing the I2C bus for the SSD1306 OLED display
	Initializing the display for SSD1306
	Expand the oled vocabulary

	TEMPVS FVGIT
	Romani non ustulo nulla
	Romani horas et minuta

	Haec omnia integramus pro ESP32forth

	Add the SPI library
	Changes to the ESP32forth.ino file
	First modification
	Second modification
	Third modification
	Fourth modification

	Communicate with the MAX7219 display module
	Locating the SPI port on the ESP32 board
	SPI connectors on the MAX7219 display module
	SPI port software layer

	Installing the HTTP client
	Editing the ESP32forth.ino file
	HTTP Client Testing

	Retrieve the time from a WEB server
	Transmission and reception of time from a web server

	Understanding transmission by GET to a WEB server
	Transmission of data to a server by GET
	Parameters in a URL
	Passing multiple parameters
	Managing parameter passing with ESP32forth

	Data transmission to a WEB server
	Data recording on the web server side
	Access protection
	View recorded data
	Add data to transmit

	Conclusion

	Sound synthesis with ESP32Forth
	Simple sound synthesis
	Definition of sound frequency table
	Retrieving the frequency of a musical note
	Managing note duration
	One-note support
	Creating musical notes
	Sound test
	The flight of the bumblebee

	Program in XTENSA assembler
	Preamble
	Compile the XTENSA assembler
	Programming in assembler
	Summary of basic instructions
	Load / loading
	Store / storage
	Memory ordering
	Jumps
	Conditional branching
	Shift
	Arithmetic
	Binary logic
	Shift
	Processor control

	A bonus disassembler

	First steps in XTENSA assembler
	Preamble
	Invoking the Xtensa assembler

	Xtensa and the FORTH stack
	Writing an Xtensa macro instruction

	Managing the FORTH stack in Xtensa assembler
	Efficiency of words written in XTENSA assembler

	Loops and connections in XTENSA assembler
	The LOOP instruction in XTENSA assembler
	Manage a loop in XTENSA assembler with ESP32forth
	Defining loop management macro instructions

	Using the For, and Next macros,
	Connection instructions in XTENSA assembler
	Defining branching macros
	Syntax of branching macro instructions

	Definition and manipulation of registers
	Definition of registers
	Access to register contents
	Handling register bits
	Definition of masks

	Switching from C language to FORTH language

	The random number generator
	Characteristic
	Programming procedure
	RND function in XTENSA assembler

	The LoRa transmission system
	Cabling of the REYAX LR890 LoRa transmitter
	The LoRa transmitter for ESP32
	LoRa transmission security

	Review of the REYAX RYLR890 LoRa transmitter
	Required test environment
	Prepare communication with the LoRa transmitter

	Setting up the REYAX RYLR890 LoRa transmitter
	Essential parameters
	ADDRESS Defines the module address
	AT Test LoRa Availability
	BAND Setting the RF frequency
	CPIN Sets the AES128 network password
	CRFOP Selects the output RF power
	FACTORY Sets all current settings to default values
	IPR Sets the UART baud rate
	MODE Selects the working mode
	NETWORKID Selects the network ID
	PARAMETER definition of RF parameters
	Spreading Factor

	Software RESET
	SEND sending data to the designated address
	VER to request firmware version
	Error result codes

	Vectorization of character emissions
	Understanding vectorization in FORTH
	Vectorization in ESP32Forth
	Vectorize type to UART2 serial port

	Rewriting a complete listing
	Setting up LoRa transmitters
	Determining the address of LoRa transmitters

	Communication between two REYAX RYLR890 LoRa transmitters
	Transmission from BOSS to SLAV2

	Interfacing a LoRa transmission with ESP32Forth
	The LoRa transmitter side program called BOSS
	Receipt and execution of FORTH commands by SLAV1
	Executing a command received by LoRa
	LoRa transmission management loop

	ESP32Forth simple WEB interface
	Detailed content of ESP32forth vocabularies
	Version v 7.0.7.15
	FORTH
	asm
	bluetooth
	editor
	ESP
	httpd
	insides
	internals
	interrupts
	ledc
	oled
	registers
	riscv
	rtos
	SD
	SD_MMC
	Serial
	sockets
	spi
	SPIFFS
	streams
	structures
	tasks
	telnetd
	visual
	web-interface
	WiFi
	Wire
	xtensa

	Appendix A – Registers summary
	GPIO registers

	Ressources
	in English
	In french
	GitHub

